Automatic Partitioning of Large Scale Simulation in Grid Computing for Run Time Reduction

Simulating large-scale systems usually entails exhaustive computational powers and lengthy execution times. The goal of this research is to reduce execution time of large-scale simulations without sacrificing their accuracy by partitioning a monolithic model into multiple pieces automatically and ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of operations research and information systems 2010-04, Vol.1 (2), p.64-90
Hauptverfasser: Al-Otaibi, Majed S, Canby, John, Kazemi, Omid, Mazhari, Esfandyar, Sarfare, Parag, Son, Young-Jun, Celik, Nurcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 2
container_start_page 64
container_title International journal of operations research and information systems
container_volume 1
creator Al-Otaibi, Majed S
Canby, John
Kazemi, Omid
Mazhari, Esfandyar
Sarfare, Parag
Son, Young-Jun
Celik, Nurcin
description Simulating large-scale systems usually entails exhaustive computational powers and lengthy execution times. The goal of this research is to reduce execution time of large-scale simulations without sacrificing their accuracy by partitioning a monolithic model into multiple pieces automatically and executing them in a distributed computing environment. While this partitioning allows us to distribute required computational power to multiple computers, it creates a new challenge of synchronizing the partitioned models. In this article, a partitioning methodology based on a modified Prim’s algorithm is proposed to minimize the overall simulation execution time considering 1) internal computation in each of the partitioned models and 2) time synchronization between them. In addition, the authors seek to find the most advantageous number of partitioned models from the monolithic model by evaluating the tradeoff between reduced computations vs. increased time synchronization requirements. In this article, epoch- based synchronization is employed to synchronize logical times of the partitioned simulations, where an appropriate time interval is determined based on the off-line simulation analyses. A computational grid framework is employed for execution of the simulations partitioned by the proposed methodology. The experimental results reveal that the proposed approach reduces simulation execution time significantly while maintaining the accuracy as compared with the monolithic simulation execution approach.
doi_str_mv 10.4018/joris.2010040105
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349424432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760764357</galeid><sourcerecordid>A760764357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2822-f0a7945a651775639080c51246e93b62ff8f992dc2247cf8ad0fc1743ee671a73</originalsourceid><addsrcrecordid>eNp1kc1LBCEYh4coKKp7R6FLh7b8Gh2Py9IXLBS1HTqJ6-jkMjNuOh7673PaaCPKw6vig-9Pn6I4QfCCQlRdrnxw8QJDBGHew3KnOECC8okghO1-r3G1XxzHuIJ5lJRzBg-Kl2kafKcGp8GDCoMbnO9d3wBvwVyFxoAnrdpcXZdaNR4C14Ob4Gow8906DSNrfQCPqQcL1xnwaOqkR_Co2LOqjeb4az4snq-vFrPbyfz-5m42nU80rjCeWKi4oKViJeK8ZETACuoSYcqMIEuGra2sELjWGFOubaVqaDXilBjDOFKcHBZnm3vXwb8lEwfZuahN26re-BQlIlRQTCnBGT39ha58Cn1OJ7EgHHMiOMvU-YZq8svlMkXXm5hLdM3rEBuVYpTT_HmcUVKO_eEG18HHGIyV6-A6Fd4lgnK0Iz_tyK2dbWTXuG2E35hc1zaj13-gn8LkT2HSW5mF_dcSkQ-8kqbx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937273976</pqid></control><display><type>article</type><title>Automatic Partitioning of Large Scale Simulation in Grid Computing for Run Time Reduction</title><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Al-Otaibi, Majed S ; Canby, John ; Kazemi, Omid ; Mazhari, Esfandyar ; Sarfare, Parag ; Son, Young-Jun ; Celik, Nurcin</creator><creatorcontrib>Al-Otaibi, Majed S ; Canby, John ; Kazemi, Omid ; Mazhari, Esfandyar ; Sarfare, Parag ; Son, Young-Jun ; Celik, Nurcin</creatorcontrib><description>Simulating large-scale systems usually entails exhaustive computational powers and lengthy execution times. The goal of this research is to reduce execution time of large-scale simulations without sacrificing their accuracy by partitioning a monolithic model into multiple pieces automatically and executing them in a distributed computing environment. While this partitioning allows us to distribute required computational power to multiple computers, it creates a new challenge of synchronizing the partitioned models. In this article, a partitioning methodology based on a modified Prim’s algorithm is proposed to minimize the overall simulation execution time considering 1) internal computation in each of the partitioned models and 2) time synchronization between them. In addition, the authors seek to find the most advantageous number of partitioned models from the monolithic model by evaluating the tradeoff between reduced computations vs. increased time synchronization requirements. In this article, epoch- based synchronization is employed to synchronize logical times of the partitioned simulations, where an appropriate time interval is determined based on the off-line simulation analyses. A computational grid framework is employed for execution of the simulations partitioned by the proposed methodology. The experimental results reveal that the proposed approach reduces simulation execution time significantly while maintaining the accuracy as compared with the monolithic simulation execution approach.</description><identifier>ISSN: 1947-9328</identifier><identifier>EISSN: 1947-9336</identifier><identifier>DOI: 10.4018/joris.2010040105</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Accuracy ; Algorithms ; Analysis ; Computation ; Computational grids ; Computer networks ; Computer simulation ; Computing time ; Distributed processing ; Methodology ; Partitioned simulation ; Partitioning ; Run time (computers) ; Simulation ; Simulation methods ; Synchronism ; Time synchronization</subject><ispartof>International journal of operations research and information systems, 2010-04, Vol.1 (2), p.64-90</ispartof><rights>COPYRIGHT 2010 IGI Global</rights><rights>Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2822-f0a7945a651775639080c51246e93b62ff8f992dc2247cf8ad0fc1743ee671a73</citedby><cites>FETCH-LOGICAL-c2822-f0a7945a651775639080c51246e93b62ff8f992dc2247cf8ad0fc1743ee671a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2937273976?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,21370,21372,27905,27906,33511,33512,33725,33726,33986,33987,43640,43786,43934,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Al-Otaibi, Majed S</creatorcontrib><creatorcontrib>Canby, John</creatorcontrib><creatorcontrib>Kazemi, Omid</creatorcontrib><creatorcontrib>Mazhari, Esfandyar</creatorcontrib><creatorcontrib>Sarfare, Parag</creatorcontrib><creatorcontrib>Son, Young-Jun</creatorcontrib><creatorcontrib>Celik, Nurcin</creatorcontrib><title>Automatic Partitioning of Large Scale Simulation in Grid Computing for Run Time Reduction</title><title>International journal of operations research and information systems</title><description>Simulating large-scale systems usually entails exhaustive computational powers and lengthy execution times. The goal of this research is to reduce execution time of large-scale simulations without sacrificing their accuracy by partitioning a monolithic model into multiple pieces automatically and executing them in a distributed computing environment. While this partitioning allows us to distribute required computational power to multiple computers, it creates a new challenge of synchronizing the partitioned models. In this article, a partitioning methodology based on a modified Prim’s algorithm is proposed to minimize the overall simulation execution time considering 1) internal computation in each of the partitioned models and 2) time synchronization between them. In addition, the authors seek to find the most advantageous number of partitioned models from the monolithic model by evaluating the tradeoff between reduced computations vs. increased time synchronization requirements. In this article, epoch- based synchronization is employed to synchronize logical times of the partitioned simulations, where an appropriate time interval is determined based on the off-line simulation analyses. A computational grid framework is employed for execution of the simulations partitioned by the proposed methodology. The experimental results reveal that the proposed approach reduces simulation execution time significantly while maintaining the accuracy as compared with the monolithic simulation execution approach.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Computation</subject><subject>Computational grids</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Distributed processing</subject><subject>Methodology</subject><subject>Partitioned simulation</subject><subject>Partitioning</subject><subject>Run time (computers)</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Synchronism</subject><subject>Time synchronization</subject><issn>1947-9328</issn><issn>1947-9336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1LBCEYh4coKKp7R6FLh7b8Gh2Py9IXLBS1HTqJ6-jkMjNuOh7673PaaCPKw6vig-9Pn6I4QfCCQlRdrnxw8QJDBGHew3KnOECC8okghO1-r3G1XxzHuIJ5lJRzBg-Kl2kafKcGp8GDCoMbnO9d3wBvwVyFxoAnrdpcXZdaNR4C14Ob4Gow8906DSNrfQCPqQcL1xnwaOqkR_Co2LOqjeb4az4snq-vFrPbyfz-5m42nU80rjCeWKi4oKViJeK8ZETACuoSYcqMIEuGra2sELjWGFOubaVqaDXilBjDOFKcHBZnm3vXwb8lEwfZuahN26re-BQlIlRQTCnBGT39ha58Cn1OJ7EgHHMiOMvU-YZq8svlMkXXm5hLdM3rEBuVYpTT_HmcUVKO_eEG18HHGIyV6-A6Fd4lgnK0Iz_tyK2dbWTXuG2E35hc1zaj13-gn8LkT2HSW5mF_dcSkQ-8kqbx</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Al-Otaibi, Majed S</creator><creator>Canby, John</creator><creator>Kazemi, Omid</creator><creator>Mazhari, Esfandyar</creator><creator>Sarfare, Parag</creator><creator>Son, Young-Jun</creator><creator>Celik, Nurcin</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M7S</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100401</creationdate><title>Automatic Partitioning of Large Scale Simulation in Grid Computing for Run Time Reduction</title><author>Al-Otaibi, Majed S ; Canby, John ; Kazemi, Omid ; Mazhari, Esfandyar ; Sarfare, Parag ; Son, Young-Jun ; Celik, Nurcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2822-f0a7945a651775639080c51246e93b62ff8f992dc2247cf8ad0fc1743ee671a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Computation</topic><topic>Computational grids</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Distributed processing</topic><topic>Methodology</topic><topic>Partitioned simulation</topic><topic>Partitioning</topic><topic>Run time (computers)</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Synchronism</topic><topic>Time synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Otaibi, Majed S</creatorcontrib><creatorcontrib>Canby, John</creatorcontrib><creatorcontrib>Kazemi, Omid</creatorcontrib><creatorcontrib>Mazhari, Esfandyar</creatorcontrib><creatorcontrib>Sarfare, Parag</creatorcontrib><creatorcontrib>Son, Young-Jun</creatorcontrib><creatorcontrib>Celik, Nurcin</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of operations research and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Otaibi, Majed S</au><au>Canby, John</au><au>Kazemi, Omid</au><au>Mazhari, Esfandyar</au><au>Sarfare, Parag</au><au>Son, Young-Jun</au><au>Celik, Nurcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Partitioning of Large Scale Simulation in Grid Computing for Run Time Reduction</atitle><jtitle>International journal of operations research and information systems</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>1</volume><issue>2</issue><spage>64</spage><epage>90</epage><pages>64-90</pages><issn>1947-9328</issn><eissn>1947-9336</eissn><abstract>Simulating large-scale systems usually entails exhaustive computational powers and lengthy execution times. The goal of this research is to reduce execution time of large-scale simulations without sacrificing their accuracy by partitioning a monolithic model into multiple pieces automatically and executing them in a distributed computing environment. While this partitioning allows us to distribute required computational power to multiple computers, it creates a new challenge of synchronizing the partitioned models. In this article, a partitioning methodology based on a modified Prim’s algorithm is proposed to minimize the overall simulation execution time considering 1) internal computation in each of the partitioned models and 2) time synchronization between them. In addition, the authors seek to find the most advantageous number of partitioned models from the monolithic model by evaluating the tradeoff between reduced computations vs. increased time synchronization requirements. In this article, epoch- based synchronization is employed to synchronize logical times of the partitioned simulations, where an appropriate time interval is determined based on the off-line simulation analyses. A computational grid framework is employed for execution of the simulations partitioned by the proposed methodology. The experimental results reveal that the proposed approach reduces simulation execution time significantly while maintaining the accuracy as compared with the monolithic simulation execution approach.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/joris.2010040105</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1947-9328
ispartof International journal of operations research and information systems, 2010-04, Vol.1 (2), p.64-90
issn 1947-9328
1947-9336
language eng
recordid cdi_proquest_miscellaneous_1349424432
source ProQuest Central (Alumni Edition); ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Accuracy
Algorithms
Analysis
Computation
Computational grids
Computer networks
Computer simulation
Computing time
Distributed processing
Methodology
Partitioned simulation
Partitioning
Run time (computers)
Simulation
Simulation methods
Synchronism
Time synchronization
title Automatic Partitioning of Large Scale Simulation in Grid Computing for Run Time Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Partitioning%20of%20Large%20Scale%20Simulation%20in%20Grid%20Computing%20for%20Run%20Time%20Reduction&rft.jtitle=International%20journal%20of%20operations%20research%20and%20information%20systems&rft.au=Al-Otaibi,%20Majed%20S&rft.date=2010-04-01&rft.volume=1&rft.issue=2&rft.spage=64&rft.epage=90&rft.pages=64-90&rft.issn=1947-9328&rft.eissn=1947-9336&rft_id=info:doi/10.4018/joris.2010040105&rft_dat=%3Cgale_proqu%3EA760764357%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937273976&rft_id=info:pmid/&rft_galeid=A760764357&rfr_iscdi=true