Efficient Depth-of-Field Rendering with Adaptive Sampling and Multiscale Reconstruction

Depth‐of‐field is one of the most crucial rendering effects for synthesizing photorealistic images. Unfortunately, this effect is also extremely costly. It can take hundreds to thousands of samples to achieve noise‐free results using Monte Carlo integration. This paper introduces an efficient adapti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2011-09, Vol.30 (6), p.1667-1680
Hauptverfasser: Chen, Jiating, Wang, Bin, Wang, Yuxiang, Overbeck, Ryan S., Yong, Jun-Hai, Wang, Wenping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1680
container_issue 6
container_start_page 1667
container_title Computer graphics forum
container_volume 30
creator Chen, Jiating
Wang, Bin
Wang, Yuxiang
Overbeck, Ryan S.
Yong, Jun-Hai
Wang, Wenping
description Depth‐of‐field is one of the most crucial rendering effects for synthesizing photorealistic images. Unfortunately, this effect is also extremely costly. It can take hundreds to thousands of samples to achieve noise‐free results using Monte Carlo integration. This paper introduces an efficient adaptive depth‐of‐field rendering algorithm that achieves noise‐free results using significantly fewer samples. Our algorithm consists of two main phases: adaptive sampling and image reconstruction. In the adaptive sampling phase, the adaptive sample density is determined by a ‘blur‐size’ map and ‘pixel‐variance’ map computed in the initialization. In the image reconstruction phase, based on the blur‐size map, we use a novel multiscale reconstruction filter to dramatically reduce the noise in the defocused areas where the sampled radiance has high variance. Because of the efficiency of this new filter, only a few samples are required. With the combination of the adaptive sampler and the multiscale filter, our algorithm renders near‐reference quality depth‐of‐field images with significantly fewer samples than previous techniques.
doi_str_mv 10.1111/j.1467-8659.2011.01854.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349420414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465374051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5514-c117bebcbf734f78f294c3f0ec5d5605e98677c84289683459e5d82f9e0383cc3</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhq0KpC6F_xD11EtSO_4-cKi23QWpgFpAPVpZZ9x6m01S26Hbf4_Doh444YtHM-8zGj0IFQRXJL_zbUWYkKUSXFc1JqTCRHFW7Y_Q4nXwBi0wybXEnB-jdzFuMcZMCr5Ad1fOeeuhT8UljOmhHFy58tC1xS30LQTf3xfPPj0UF20zJv8Liu_NbuzmdtO3xZepSz7apoOct0MfU5hs8kP_Hr11TRfhw9__BP1cXf1Yfiqvv60_Ly-uS8s5YaUlRG5gYzdOUuakcrVmljoMlrdcYA5aCSmtYrXSQlHGNfBW1U4DpopaS0_Q2WHvGIanCWIyu3wPdF3TwzBFQyjTrMaMsBw9_Se6HabQ5-uM0lQoVWOaQ-oQsmGIMYAzY_C7JrwYgs0s3GzN7NXMXs0s3PwRbvYZ_XhAn30HL__NmeV6NVeZLw-8jwn2r3wTHo2QVHJz93Vt-M0t12J9YyT9DWKSlQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893688203</pqid></control><display><type>article</type><title>Efficient Depth-of-Field Rendering with Adaptive Sampling and Multiscale Reconstruction</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Chen, Jiating ; Wang, Bin ; Wang, Yuxiang ; Overbeck, Ryan S. ; Yong, Jun-Hai ; Wang, Wenping</creator><creatorcontrib>Chen, Jiating ; Wang, Bin ; Wang, Yuxiang ; Overbeck, Ryan S. ; Yong, Jun-Hai ; Wang, Wenping</creatorcontrib><description>Depth‐of‐field is one of the most crucial rendering effects for synthesizing photorealistic images. Unfortunately, this effect is also extremely costly. It can take hundreds to thousands of samples to achieve noise‐free results using Monte Carlo integration. This paper introduces an efficient adaptive depth‐of‐field rendering algorithm that achieves noise‐free results using significantly fewer samples. Our algorithm consists of two main phases: adaptive sampling and image reconstruction. In the adaptive sampling phase, the adaptive sample density is determined by a ‘blur‐size’ map and ‘pixel‐variance’ map computed in the initialization. In the image reconstruction phase, based on the blur‐size map, we use a novel multiscale reconstruction filter to dramatically reduce the noise in the defocused areas where the sampled radiance has high variance. Because of the efficiency of this new filter, only a few samples are required. With the combination of the adaptive sampler and the multiscale filter, our algorithm renders near‐reference quality depth‐of‐field images with significantly fewer samples than previous techniques.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/j.1467-8659.2011.01854.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adaptive sampling ; Algorithms ; Computer graphics ; Computer science ; Computer simulation ; depth-of-field rendering ; I.3.3 [Computer Graphics]: Picture/Image Generation ; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism ; Monte Carlo methods ; Monte Carlo simulation ; multiscale reconstruction ; Noise ; Phases ; Reconstruction ; Rendering ; Studies</subject><ispartof>Computer graphics forum, 2011-09, Vol.30 (6), p.1667-1680</ispartof><rights>2011 The Authors Computer Graphics Forum © 2011 The Eurographics Association and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5514-c117bebcbf734f78f294c3f0ec5d5605e98677c84289683459e5d82f9e0383cc3</citedby><cites>FETCH-LOGICAL-c5514-c117bebcbf734f78f294c3f0ec5d5605e98677c84289683459e5d82f9e0383cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8659.2011.01854.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8659.2011.01854.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Jiating</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Overbeck, Ryan S.</creatorcontrib><creatorcontrib>Yong, Jun-Hai</creatorcontrib><creatorcontrib>Wang, Wenping</creatorcontrib><title>Efficient Depth-of-Field Rendering with Adaptive Sampling and Multiscale Reconstruction</title><title>Computer graphics forum</title><description>Depth‐of‐field is one of the most crucial rendering effects for synthesizing photorealistic images. Unfortunately, this effect is also extremely costly. It can take hundreds to thousands of samples to achieve noise‐free results using Monte Carlo integration. This paper introduces an efficient adaptive depth‐of‐field rendering algorithm that achieves noise‐free results using significantly fewer samples. Our algorithm consists of two main phases: adaptive sampling and image reconstruction. In the adaptive sampling phase, the adaptive sample density is determined by a ‘blur‐size’ map and ‘pixel‐variance’ map computed in the initialization. In the image reconstruction phase, based on the blur‐size map, we use a novel multiscale reconstruction filter to dramatically reduce the noise in the defocused areas where the sampled radiance has high variance. Because of the efficiency of this new filter, only a few samples are required. With the combination of the adaptive sampler and the multiscale filter, our algorithm renders near‐reference quality depth‐of‐field images with significantly fewer samples than previous techniques.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Computer graphics</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>depth-of-field rendering</subject><subject>I.3.3 [Computer Graphics]: Picture/Image Generation</subject><subject>I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>multiscale reconstruction</subject><subject>Noise</subject><subject>Phases</subject><subject>Reconstruction</subject><subject>Rendering</subject><subject>Studies</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v1DAQhq0KpC6F_xD11EtSO_4-cKi23QWpgFpAPVpZZ9x6m01S26Hbf4_Doh444YtHM-8zGj0IFQRXJL_zbUWYkKUSXFc1JqTCRHFW7Y_Q4nXwBi0wybXEnB-jdzFuMcZMCr5Ad1fOeeuhT8UljOmhHFy58tC1xS30LQTf3xfPPj0UF20zJv8Liu_NbuzmdtO3xZepSz7apoOct0MfU5hs8kP_Hr11TRfhw9__BP1cXf1Yfiqvv60_Ly-uS8s5YaUlRG5gYzdOUuakcrVmljoMlrdcYA5aCSmtYrXSQlHGNfBW1U4DpopaS0_Q2WHvGIanCWIyu3wPdF3TwzBFQyjTrMaMsBw9_Se6HabQ5-uM0lQoVWOaQ-oQsmGIMYAzY_C7JrwYgs0s3GzN7NXMXs0s3PwRbvYZ_XhAn30HL__NmeV6NVeZLw-8jwn2r3wTHo2QVHJz93Vt-M0t12J9YyT9DWKSlQU</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Chen, Jiating</creator><creator>Wang, Bin</creator><creator>Wang, Yuxiang</creator><creator>Overbeck, Ryan S.</creator><creator>Yong, Jun-Hai</creator><creator>Wang, Wenping</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201109</creationdate><title>Efficient Depth-of-Field Rendering with Adaptive Sampling and Multiscale Reconstruction</title><author>Chen, Jiating ; Wang, Bin ; Wang, Yuxiang ; Overbeck, Ryan S. ; Yong, Jun-Hai ; Wang, Wenping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5514-c117bebcbf734f78f294c3f0ec5d5605e98677c84289683459e5d82f9e0383cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Computer graphics</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>depth-of-field rendering</topic><topic>I.3.3 [Computer Graphics]: Picture/Image Generation</topic><topic>I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>multiscale reconstruction</topic><topic>Noise</topic><topic>Phases</topic><topic>Reconstruction</topic><topic>Rendering</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiating</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Overbeck, Ryan S.</creatorcontrib><creatorcontrib>Yong, Jun-Hai</creatorcontrib><creatorcontrib>Wang, Wenping</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiating</au><au>Wang, Bin</au><au>Wang, Yuxiang</au><au>Overbeck, Ryan S.</au><au>Yong, Jun-Hai</au><au>Wang, Wenping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Depth-of-Field Rendering with Adaptive Sampling and Multiscale Reconstruction</atitle><jtitle>Computer graphics forum</jtitle><date>2011-09</date><risdate>2011</risdate><volume>30</volume><issue>6</issue><spage>1667</spage><epage>1680</epage><pages>1667-1680</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Depth‐of‐field is one of the most crucial rendering effects for synthesizing photorealistic images. Unfortunately, this effect is also extremely costly. It can take hundreds to thousands of samples to achieve noise‐free results using Monte Carlo integration. This paper introduces an efficient adaptive depth‐of‐field rendering algorithm that achieves noise‐free results using significantly fewer samples. Our algorithm consists of two main phases: adaptive sampling and image reconstruction. In the adaptive sampling phase, the adaptive sample density is determined by a ‘blur‐size’ map and ‘pixel‐variance’ map computed in the initialization. In the image reconstruction phase, based on the blur‐size map, we use a novel multiscale reconstruction filter to dramatically reduce the noise in the defocused areas where the sampled radiance has high variance. Because of the efficiency of this new filter, only a few samples are required. With the combination of the adaptive sampler and the multiscale filter, our algorithm renders near‐reference quality depth‐of‐field images with significantly fewer samples than previous techniques.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8659.2011.01854.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2011-09, Vol.30 (6), p.1667-1680
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_1349420414
source Business Source Complete; Wiley Online Library All Journals
subjects Adaptive sampling
Algorithms
Computer graphics
Computer science
Computer simulation
depth-of-field rendering
I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism
Monte Carlo methods
Monte Carlo simulation
multiscale reconstruction
Noise
Phases
Reconstruction
Rendering
Studies
title Efficient Depth-of-Field Rendering with Adaptive Sampling and Multiscale Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Depth-of-Field%20Rendering%20with%20Adaptive%20Sampling%20and%20Multiscale%20Reconstruction&rft.jtitle=Computer%20graphics%20forum&rft.au=Chen,%20Jiating&rft.date=2011-09&rft.volume=30&rft.issue=6&rft.spage=1667&rft.epage=1680&rft.pages=1667-1680&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/j.1467-8659.2011.01854.x&rft_dat=%3Cproquest_cross%3E2465374051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893688203&rft_id=info:pmid/&rfr_iscdi=true