Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation
•316L stainless steel was micro/nanostructured through femtosecond laser treatment.•The process resulted in increase in hydrophobicity and carbon content of the surface.•hBM MSC and endothelial cell adhesion was improved and fibroblast adhesion decreased.•Increased in vitro bone formation rate was o...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2013-08, Vol.108, p.305-312 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | |
container_start_page | 305 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 108 |
creator | Kenar, Halime Akman, Erhan Kacar, Elif Demir, Arif Park, Haiwoong Abdul-Khaliq, Hashim Aktas, Cenk Karaoz, Erdal |
description | •316L stainless steel was micro/nanostructured through femtosecond laser treatment.•The process resulted in increase in hydrophobicity and carbon content of the surface.•hBM MSC and endothelial cell adhesion was improved and fibroblast adhesion decreased.•Increased in vitro bone formation rate was observed on the laser treated samples.
Cell-material surface interaction plays a critical role in osseointegration of prosthetic implants used in orthopedic surgeries and dentistry. Different technical approaches exist to improve surface properties of such implants either by coating or by modification of their topography. Femtosecond laser treatment was used in this study to generate microspotted lines separated by 75, 125, or 175μm wide nanostructured interlines on stainless steel (316L) plates. The hydrophobicity and carbon content of the metallic surface were improved simultaneously through this method. In vitro testing of the laser treated plates revealed a significant improvement in adhesion of human endothelial cells and human bone marrow mesenchymal stem cells (hBM MSCs), the cells involved in microvessel and bone formation, respectively, and a significant decrease in fibroblast adhesion, which is implicated in osteolysis and aseptic loosening of prostheses. The hBM MSCs showed an increased bone formation rate on the laser treated plates under osteogenic conditions; the highest mineral deposition was obtained on the surface with 125μm interline distance (292±18mg/cm2 vs. 228±43mg/cm2 on untreated surface). Further in vivo testing of these laser treated surfaces in the native prosthetic implant niche would give a real insight into their effectiveness in improving osseointegration and their potential use in clinical applications. |
doi_str_mv | 10.1016/j.colsurfb.2013.02.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349092576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776513001689</els_id><sourcerecordid>1349092576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c33755452a92dbe4a2e5552303d9fbe9112307ce107c49dbb9b981930335da563</originalsourceid><addsrcrecordid>eNqFUU1v3CAURFGjZLPpX4g49mKHD2OWnhpF3aTSSr0kZ4Txc8rKhhSwpf6K_uXibtJrL4Dem3nDvEHohpKaEtreHmsbxjTHoasZobwmrCZcnaEN3UleNbyVH9CGKCYrKVtxia5SOhJCWEPlBbpkXLScqd0G_d7DlEMCG3yPR5Mg4hzB5Al8xmHAnLYH7KbXGBZI2OWEV1FjAXvjQwzzyw8PKWFT6NbELnhcRuWVvZYKbwq5MENKEFxpvESTXfCf8Z3HzuPF5RgwLGac_9av0flgxgQf3-4tet5_fbp_rA7fH77d3x0q2_AmV5ZzKUQjmFGs76AxDIQQjBPeq6EDRWl5Swu0HI3qu051akdV6XPRm2J-iz6d5pYf_pwhZT25ZGEcjYcwJ015o8r6hFyh7QlqY3ERYdCv0U0m_tKU6DUMfdTvYeg1DE2YLmEU4s2bxtxN0P-jvW-_AL6cAFCcLg6iTtaBt9C7CDbrPrj_afwBqKyhTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349092576</pqid></control><display><type>article</type><title>Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kenar, Halime ; Akman, Erhan ; Kacar, Elif ; Demir, Arif ; Park, Haiwoong ; Abdul-Khaliq, Hashim ; Aktas, Cenk ; Karaoz, Erdal</creator><creatorcontrib>Kenar, Halime ; Akman, Erhan ; Kacar, Elif ; Demir, Arif ; Park, Haiwoong ; Abdul-Khaliq, Hashim ; Aktas, Cenk ; Karaoz, Erdal</creatorcontrib><description>•316L stainless steel was micro/nanostructured through femtosecond laser treatment.•The process resulted in increase in hydrophobicity and carbon content of the surface.•hBM MSC and endothelial cell adhesion was improved and fibroblast adhesion decreased.•Increased in vitro bone formation rate was observed on the laser treated samples.
Cell-material surface interaction plays a critical role in osseointegration of prosthetic implants used in orthopedic surgeries and dentistry. Different technical approaches exist to improve surface properties of such implants either by coating or by modification of their topography. Femtosecond laser treatment was used in this study to generate microspotted lines separated by 75, 125, or 175μm wide nanostructured interlines on stainless steel (316L) plates. The hydrophobicity and carbon content of the metallic surface were improved simultaneously through this method. In vitro testing of the laser treated plates revealed a significant improvement in adhesion of human endothelial cells and human bone marrow mesenchymal stem cells (hBM MSCs), the cells involved in microvessel and bone formation, respectively, and a significant decrease in fibroblast adhesion, which is implicated in osteolysis and aseptic loosening of prostheses. The hBM MSCs showed an increased bone formation rate on the laser treated plates under osteogenic conditions; the highest mineral deposition was obtained on the surface with 125μm interline distance (292±18mg/cm2 vs. 228±43mg/cm2 on untreated surface). Further in vivo testing of these laser treated surfaces in the native prosthetic implant niche would give a real insight into their effectiveness in improving osseointegration and their potential use in clinical applications.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2013.02.039</identifier><identifier>PMID: 23563298</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Calcification, Physiologic ; Carbon - chemistry ; Cell Adhesion - drug effects ; Cell Differentiation ; Cell Proliferation - drug effects ; Cells, Cultured ; Femtosecond laser treatment ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - drug effects ; Humans ; Hydrophobic and Hydrophilic Interactions ; Lasers ; Materials Testing ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Osseointegration ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Prostheses and Implants ; Stainless steel ; Stainless Steel - pharmacology ; Stainless Steel - radiation effects ; Surface chemistry ; Surface Properties - radiation effects ; Surface topography</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2013-08, Vol.108, p.305-312</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c33755452a92dbe4a2e5552303d9fbe9112307ce107c49dbb9b981930335da563</citedby><cites>FETCH-LOGICAL-c434t-c33755452a92dbe4a2e5552303d9fbe9112307ce107c49dbb9b981930335da563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfb.2013.02.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23563298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kenar, Halime</creatorcontrib><creatorcontrib>Akman, Erhan</creatorcontrib><creatorcontrib>Kacar, Elif</creatorcontrib><creatorcontrib>Demir, Arif</creatorcontrib><creatorcontrib>Park, Haiwoong</creatorcontrib><creatorcontrib>Abdul-Khaliq, Hashim</creatorcontrib><creatorcontrib>Aktas, Cenk</creatorcontrib><creatorcontrib>Karaoz, Erdal</creatorcontrib><title>Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>•316L stainless steel was micro/nanostructured through femtosecond laser treatment.•The process resulted in increase in hydrophobicity and carbon content of the surface.•hBM MSC and endothelial cell adhesion was improved and fibroblast adhesion decreased.•Increased in vitro bone formation rate was observed on the laser treated samples.
Cell-material surface interaction plays a critical role in osseointegration of prosthetic implants used in orthopedic surgeries and dentistry. Different technical approaches exist to improve surface properties of such implants either by coating or by modification of their topography. Femtosecond laser treatment was used in this study to generate microspotted lines separated by 75, 125, or 175μm wide nanostructured interlines on stainless steel (316L) plates. The hydrophobicity and carbon content of the metallic surface were improved simultaneously through this method. In vitro testing of the laser treated plates revealed a significant improvement in adhesion of human endothelial cells and human bone marrow mesenchymal stem cells (hBM MSCs), the cells involved in microvessel and bone formation, respectively, and a significant decrease in fibroblast adhesion, which is implicated in osteolysis and aseptic loosening of prostheses. The hBM MSCs showed an increased bone formation rate on the laser treated plates under osteogenic conditions; the highest mineral deposition was obtained on the surface with 125μm interline distance (292±18mg/cm2 vs. 228±43mg/cm2 on untreated surface). Further in vivo testing of these laser treated surfaces in the native prosthetic implant niche would give a real insight into their effectiveness in improving osseointegration and their potential use in clinical applications.</description><subject>Calcification, Physiologic</subject><subject>Carbon - chemistry</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Femtosecond laser treatment</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Lasers</subject><subject>Materials Testing</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Osseointegration</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Prostheses and Implants</subject><subject>Stainless steel</subject><subject>Stainless Steel - pharmacology</subject><subject>Stainless Steel - radiation effects</subject><subject>Surface chemistry</subject><subject>Surface Properties - radiation effects</subject><subject>Surface topography</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v3CAURFGjZLPpX4g49mKHD2OWnhpF3aTSSr0kZ4Txc8rKhhSwpf6K_uXibtJrL4Dem3nDvEHohpKaEtreHmsbxjTHoasZobwmrCZcnaEN3UleNbyVH9CGKCYrKVtxia5SOhJCWEPlBbpkXLScqd0G_d7DlEMCG3yPR5Mg4hzB5Al8xmHAnLYH7KbXGBZI2OWEV1FjAXvjQwzzyw8PKWFT6NbELnhcRuWVvZYKbwq5MENKEFxpvESTXfCf8Z3HzuPF5RgwLGac_9av0flgxgQf3-4tet5_fbp_rA7fH77d3x0q2_AmV5ZzKUQjmFGs76AxDIQQjBPeq6EDRWl5Swu0HI3qu051akdV6XPRm2J-iz6d5pYf_pwhZT25ZGEcjYcwJ015o8r6hFyh7QlqY3ERYdCv0U0m_tKU6DUMfdTvYeg1DE2YLmEU4s2bxtxN0P-jvW-_AL6cAFCcLg6iTtaBt9C7CDbrPrj_afwBqKyhTw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Kenar, Halime</creator><creator>Akman, Erhan</creator><creator>Kacar, Elif</creator><creator>Demir, Arif</creator><creator>Park, Haiwoong</creator><creator>Abdul-Khaliq, Hashim</creator><creator>Aktas, Cenk</creator><creator>Karaoz, Erdal</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation</title><author>Kenar, Halime ; Akman, Erhan ; Kacar, Elif ; Demir, Arif ; Park, Haiwoong ; Abdul-Khaliq, Hashim ; Aktas, Cenk ; Karaoz, Erdal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c33755452a92dbe4a2e5552303d9fbe9112307ce107c49dbb9b981930335da563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Calcification, Physiologic</topic><topic>Carbon - chemistry</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Femtosecond laser treatment</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Lasers</topic><topic>Materials Testing</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Osseointegration</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Prostheses and Implants</topic><topic>Stainless steel</topic><topic>Stainless Steel - pharmacology</topic><topic>Stainless Steel - radiation effects</topic><topic>Surface chemistry</topic><topic>Surface Properties - radiation effects</topic><topic>Surface topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenar, Halime</creatorcontrib><creatorcontrib>Akman, Erhan</creatorcontrib><creatorcontrib>Kacar, Elif</creatorcontrib><creatorcontrib>Demir, Arif</creatorcontrib><creatorcontrib>Park, Haiwoong</creatorcontrib><creatorcontrib>Abdul-Khaliq, Hashim</creatorcontrib><creatorcontrib>Aktas, Cenk</creatorcontrib><creatorcontrib>Karaoz, Erdal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenar, Halime</au><au>Akman, Erhan</au><au>Kacar, Elif</au><au>Demir, Arif</au><au>Park, Haiwoong</au><au>Abdul-Khaliq, Hashim</au><au>Aktas, Cenk</au><au>Karaoz, Erdal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>108</volume><spage>305</spage><epage>312</epage><pages>305-312</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>•316L stainless steel was micro/nanostructured through femtosecond laser treatment.•The process resulted in increase in hydrophobicity and carbon content of the surface.•hBM MSC and endothelial cell adhesion was improved and fibroblast adhesion decreased.•Increased in vitro bone formation rate was observed on the laser treated samples.
Cell-material surface interaction plays a critical role in osseointegration of prosthetic implants used in orthopedic surgeries and dentistry. Different technical approaches exist to improve surface properties of such implants either by coating or by modification of their topography. Femtosecond laser treatment was used in this study to generate microspotted lines separated by 75, 125, or 175μm wide nanostructured interlines on stainless steel (316L) plates. The hydrophobicity and carbon content of the metallic surface were improved simultaneously through this method. In vitro testing of the laser treated plates revealed a significant improvement in adhesion of human endothelial cells and human bone marrow mesenchymal stem cells (hBM MSCs), the cells involved in microvessel and bone formation, respectively, and a significant decrease in fibroblast adhesion, which is implicated in osteolysis and aseptic loosening of prostheses. The hBM MSCs showed an increased bone formation rate on the laser treated plates under osteogenic conditions; the highest mineral deposition was obtained on the surface with 125μm interline distance (292±18mg/cm2 vs. 228±43mg/cm2 on untreated surface). Further in vivo testing of these laser treated surfaces in the native prosthetic implant niche would give a real insight into their effectiveness in improving osseointegration and their potential use in clinical applications.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23563298</pmid><doi>10.1016/j.colsurfb.2013.02.039</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2013-08, Vol.108, p.305-312 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349092576 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Calcification, Physiologic Carbon - chemistry Cell Adhesion - drug effects Cell Differentiation Cell Proliferation - drug effects Cells, Cultured Femtosecond laser treatment Fibroblasts - cytology Fibroblasts - drug effects Human Umbilical Vein Endothelial Cells - cytology Human Umbilical Vein Endothelial Cells - drug effects Humans Hydrophobic and Hydrophilic Interactions Lasers Materials Testing Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - drug effects Osseointegration Osteoblasts - cytology Osteoblasts - drug effects Prostheses and Implants Stainless steel Stainless Steel - pharmacology Stainless Steel - radiation effects Surface chemistry Surface Properties - radiation effects Surface topography |
title | Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtosecond%20laser%20treatment%20of%20316L%20improves%20its%20surface%20nanoroughness%20and%20carbon%20content%20and%20promotes%20osseointegration:%20An%20in%20vitro%20evaluation&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Kenar,%20Halime&rft.date=2013-08-01&rft.volume=108&rft.spage=305&rft.epage=312&rft.pages=305-312&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2013.02.039&rft_dat=%3Cproquest_cross%3E1349092576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349092576&rft_id=info:pmid/23563298&rft_els_id=S0927776513001689&rfr_iscdi=true |