A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia

Coupled ocean–atmosphere general circulation models (GCMs) lack sufficient resolution to model the regional detail of changes to mean circulation and rainfall with projected climate warming. In this paper, changes in mean circulation and rainfall in GCMs are compared to those in a variable resolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2013-04, Vol.40 (7-8), p.2035-2048
Hauptverfasser: Grose, Michael R., Corney, Stuart P., Katzfey, Jack J., Bennett, James C., Holz, Gregory K., White, Christopher J., Bindoff, Nathaniel L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2048
container_issue 7-8
container_start_page 2035
container_title Climate dynamics
container_volume 40
creator Grose, Michael R.
Corney, Stuart P.
Katzfey, Jack J.
Bennett, James C.
Holz, Gregory K.
White, Christopher J.
Bindoff, Nathaniel L.
description Coupled ocean–atmosphere general circulation models (GCMs) lack sufficient resolution to model the regional detail of changes to mean circulation and rainfall with projected climate warming. In this paper, changes in mean circulation and rainfall in GCMs are compared to those in a variable resolution regional climate model, the Conformal Cubic Atmospheric Model (CCAM), under a high greenhouse gas emissions scenario. The study site is Tasmania, Australia, which is positioned within the mid-latitude westerlies of the southern hemisphere. CCAM projects a different response in mean sea level pressure and mid-latitude westerly circulation to climate warming to the GCMs used as input, and shows greater regional detail of the boundaries between regions of increasing and decreasing rainfall. Changes in mean circulation dominate the mean rainfall response in western Tasmania, whereas changes to rainfall in the East Coast are less related to mean circulation changes. CCAM projects an amplification of the dominant westerly circulation over Tasmania and this amplifies the seasonal cycle of wet winters and dry summers in the west. There is a larger change in the strength than in the incidence of westerly circulation and rainfall events. We propose the regional climate model displays a more sensitive atmospheric response to the different rates of warming of land and sea than the GCMs as input. The regional variation in these results highlight the need for dynamical downscaling of coupled general circulation models to finely resolve the influence of mean circulation and boundaries between regions of projected increases and decreases in rainfall.
doi_str_mv 10.1007/s00382-012-1405-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1348486384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A336489673</galeid><sourcerecordid>A336489673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-db47e598e969213844da38919326388a930ef27125e14d32ce66ceaf71e71f5c3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EEsvCB-DmC4gDAf9L7BxXVaFIlbiUszU4k61XjrN4Eqp-e7xKxbGnsca_eTNPj7H3UnyRQtivJIR2qhFSNdKItpEv2E4aXTuuNy_ZTvRaNLa17Wv2hugkhDSdVTtGB17wGOcMqT7oPGdCHjOfEDJ_QFqwpEceYglrgqVyHPLAC8Q8Qkp8mfm5zCcMCw48pDjBgvwByhTzkc9_sfA7oAlyhM_8sNJSIEV4y17VYcJ3T3XPfn27vru6aW5_fv9xdbhtgpHt0gy_jcW2d9h3vZLaGTOAdr3steq0c1Ad4aisVC1KM2gVsOsCwmglWjm2Qe_Zp023nvhnrV78FClgSpBxXslLbZxxVctU9OOGHiGhv0dIyz3Nab04Jn_QujOu76yuoNzAUGaigqM_l-q6PHop_CUJvyXhaxL-kkTdsmcfnu4ACpDGAjlE-j-obBWvxiqnNo7qVz5i8ad5LTUZekb8H1w9mH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348486384</pqid></control><display><type>article</type><title>A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia</title><source>SpringerLink Journals</source><creator>Grose, Michael R. ; Corney, Stuart P. ; Katzfey, Jack J. ; Bennett, James C. ; Holz, Gregory K. ; White, Christopher J. ; Bindoff, Nathaniel L.</creator><creatorcontrib>Grose, Michael R. ; Corney, Stuart P. ; Katzfey, Jack J. ; Bennett, James C. ; Holz, Gregory K. ; White, Christopher J. ; Bindoff, Nathaniel L.</creatorcontrib><description>Coupled ocean–atmosphere general circulation models (GCMs) lack sufficient resolution to model the regional detail of changes to mean circulation and rainfall with projected climate warming. In this paper, changes in mean circulation and rainfall in GCMs are compared to those in a variable resolution regional climate model, the Conformal Cubic Atmospheric Model (CCAM), under a high greenhouse gas emissions scenario. The study site is Tasmania, Australia, which is positioned within the mid-latitude westerlies of the southern hemisphere. CCAM projects a different response in mean sea level pressure and mid-latitude westerly circulation to climate warming to the GCMs used as input, and shows greater regional detail of the boundaries between regions of increasing and decreasing rainfall. Changes in mean circulation dominate the mean rainfall response in western Tasmania, whereas changes to rainfall in the East Coast are less related to mean circulation changes. CCAM projects an amplification of the dominant westerly circulation over Tasmania and this amplifies the seasonal cycle of wet winters and dry summers in the west. There is a larger change in the strength than in the incidence of westerly circulation and rainfall events. We propose the regional climate model displays a more sensitive atmospheric response to the different rates of warming of land and sea than the GCMs as input. The regional variation in these results highlight the need for dynamical downscaling of coupled general circulation models to finely resolve the influence of mean circulation and boundaries between regions of projected increases and decreases in rainfall.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-012-1405-1</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Atmospheric circulation ; Climatic changes ; Climatology ; Climatology. Bioclimatology. Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Environmental aspects ; Exact sciences and technology ; External geophysics ; Geophysics/Geodesy ; Marine ; Meteorology ; Oceanography ; Rain and rainfall</subject><ispartof>Climate dynamics, 2013-04, Vol.40 (7-8), p.2035-2048</ispartof><rights>Springer-Verlag 2012</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-db47e598e969213844da38919326388a930ef27125e14d32ce66ceaf71e71f5c3</citedby><cites>FETCH-LOGICAL-c415t-db47e598e969213844da38919326388a930ef27125e14d32ce66ceaf71e71f5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-012-1405-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-012-1405-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27648389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grose, Michael R.</creatorcontrib><creatorcontrib>Corney, Stuart P.</creatorcontrib><creatorcontrib>Katzfey, Jack J.</creatorcontrib><creatorcontrib>Bennett, James C.</creatorcontrib><creatorcontrib>Holz, Gregory K.</creatorcontrib><creatorcontrib>White, Christopher J.</creatorcontrib><creatorcontrib>Bindoff, Nathaniel L.</creatorcontrib><title>A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Coupled ocean–atmosphere general circulation models (GCMs) lack sufficient resolution to model the regional detail of changes to mean circulation and rainfall with projected climate warming. In this paper, changes in mean circulation and rainfall in GCMs are compared to those in a variable resolution regional climate model, the Conformal Cubic Atmospheric Model (CCAM), under a high greenhouse gas emissions scenario. The study site is Tasmania, Australia, which is positioned within the mid-latitude westerlies of the southern hemisphere. CCAM projects a different response in mean sea level pressure and mid-latitude westerly circulation to climate warming to the GCMs used as input, and shows greater regional detail of the boundaries between regions of increasing and decreasing rainfall. Changes in mean circulation dominate the mean rainfall response in western Tasmania, whereas changes to rainfall in the East Coast are less related to mean circulation changes. CCAM projects an amplification of the dominant westerly circulation over Tasmania and this amplifies the seasonal cycle of wet winters and dry summers in the west. There is a larger change in the strength than in the incidence of westerly circulation and rainfall events. We propose the regional climate model displays a more sensitive atmospheric response to the different rates of warming of land and sea than the GCMs as input. The regional variation in these results highlight the need for dynamical downscaling of coupled general circulation models to finely resolve the influence of mean circulation and boundaries between regions of projected increases and decreases in rainfall.</description><subject>Atmospheric circulation</subject><subject>Climatic changes</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental aspects</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Oceanography</subject><subject>Rain and rainfall</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EEsvCB-DmC4gDAf9L7BxXVaFIlbiUszU4k61XjrN4Eqp-e7xKxbGnsca_eTNPj7H3UnyRQtivJIR2qhFSNdKItpEv2E4aXTuuNy_ZTvRaNLa17Wv2hugkhDSdVTtGB17wGOcMqT7oPGdCHjOfEDJ_QFqwpEceYglrgqVyHPLAC8Q8Qkp8mfm5zCcMCw48pDjBgvwByhTzkc9_sfA7oAlyhM_8sNJSIEV4y17VYcJ3T3XPfn27vru6aW5_fv9xdbhtgpHt0gy_jcW2d9h3vZLaGTOAdr3steq0c1Ad4aisVC1KM2gVsOsCwmglWjm2Qe_Zp023nvhnrV78FClgSpBxXslLbZxxVctU9OOGHiGhv0dIyz3Nab04Jn_QujOu76yuoNzAUGaigqM_l-q6PHop_CUJvyXhaxL-kkTdsmcfnu4ACpDGAjlE-j-obBWvxiqnNo7qVz5i8ad5LTUZekb8H1w9mH0</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Grose, Michael R.</creator><creator>Corney, Stuart P.</creator><creator>Katzfey, Jack J.</creator><creator>Bennett, James C.</creator><creator>Holz, Gregory K.</creator><creator>White, Christopher J.</creator><creator>Bindoff, Nathaniel L.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20130401</creationdate><title>A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia</title><author>Grose, Michael R. ; Corney, Stuart P. ; Katzfey, Jack J. ; Bennett, James C. ; Holz, Gregory K. ; White, Christopher J. ; Bindoff, Nathaniel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-db47e598e969213844da38919326388a930ef27125e14d32ce66ceaf71e71f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric circulation</topic><topic>Climatic changes</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental aspects</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Oceanography</topic><topic>Rain and rainfall</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grose, Michael R.</creatorcontrib><creatorcontrib>Corney, Stuart P.</creatorcontrib><creatorcontrib>Katzfey, Jack J.</creatorcontrib><creatorcontrib>Bennett, James C.</creatorcontrib><creatorcontrib>Holz, Gregory K.</creatorcontrib><creatorcontrib>White, Christopher J.</creatorcontrib><creatorcontrib>Bindoff, Nathaniel L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grose, Michael R.</au><au>Corney, Stuart P.</au><au>Katzfey, Jack J.</au><au>Bennett, James C.</au><au>Holz, Gregory K.</au><au>White, Christopher J.</au><au>Bindoff, Nathaniel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>40</volume><issue>7-8</issue><spage>2035</spage><epage>2048</epage><pages>2035-2048</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>Coupled ocean–atmosphere general circulation models (GCMs) lack sufficient resolution to model the regional detail of changes to mean circulation and rainfall with projected climate warming. In this paper, changes in mean circulation and rainfall in GCMs are compared to those in a variable resolution regional climate model, the Conformal Cubic Atmospheric Model (CCAM), under a high greenhouse gas emissions scenario. The study site is Tasmania, Australia, which is positioned within the mid-latitude westerlies of the southern hemisphere. CCAM projects a different response in mean sea level pressure and mid-latitude westerly circulation to climate warming to the GCMs used as input, and shows greater regional detail of the boundaries between regions of increasing and decreasing rainfall. Changes in mean circulation dominate the mean rainfall response in western Tasmania, whereas changes to rainfall in the East Coast are less related to mean circulation changes. CCAM projects an amplification of the dominant westerly circulation over Tasmania and this amplifies the seasonal cycle of wet winters and dry summers in the west. There is a larger change in the strength than in the incidence of westerly circulation and rainfall events. We propose the regional climate model displays a more sensitive atmospheric response to the different rates of warming of land and sea than the GCMs as input. The regional variation in these results highlight the need for dynamical downscaling of coupled general circulation models to finely resolve the influence of mean circulation and boundaries between regions of projected increases and decreases in rainfall.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00382-012-1405-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2013-04, Vol.40 (7-8), p.2035-2048
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_1348486384
source SpringerLink Journals
subjects Atmospheric circulation
Climatic changes
Climatology
Climatology. Bioclimatology. Climate change
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Environmental aspects
Exact sciences and technology
External geophysics
Geophysics/Geodesy
Marine
Meteorology
Oceanography
Rain and rainfall
title A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20regional%20response%20in%20mean%20westerly%20circulation%20and%20rainfall%20to%20projected%20climate%20warming%20over%20Tasmania,%20Australia&rft.jtitle=Climate%20dynamics&rft.au=Grose,%20Michael%20R.&rft.date=2013-04-01&rft.volume=40&rft.issue=7-8&rft.spage=2035&rft.epage=2048&rft.pages=2035-2048&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-012-1405-1&rft_dat=%3Cgale_proqu%3EA336489673%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348486384&rft_id=info:pmid/&rft_galeid=A336489673&rfr_iscdi=true