Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava

This work investigated the roles of the tetraamine thermospermine (TSpm) by analysing its contribution to Arabidopsis basal defence against the biotrophic bacterium Pseudomonas viridiflava. The participation of polyamine oxidases (PAOs) in TSpm homeostasis and TSpm-mediated defence was also investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2013-03, Vol.64 (5), p.1393-1402
Hauptverfasser: Marina, María, Sirera, Francisco Vera, Rambla, José L, Gonzalez, María E, Blázquez, Miguel A, Carbonell, Juan, Pieckenstain, Fernando L, Ruiz, Oscar A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work investigated the roles of the tetraamine thermospermine (TSpm) by analysing its contribution to Arabidopsis basal defence against the biotrophic bacterium Pseudomonas viridiflava. The participation of polyamine oxidases (PAOs) in TSpm homeostasis and TSpm-mediated defence was also investigated. Exogenous supply of TSpm, as well as ectopic expression of the TSpm biosynthetic gene ACL5, increased Arabidopsis Col-0 resistance to P. viridiflava, while null acl5 mutants were less resistant than Col-0 plants. The above-mentioned increase in resistance was blocked by the PAO inhibitor SL-11061, thus demonstrating the participation of TSpm oxidation. Analysis of PAO genes expression in transgenic 35S::ACL5 and Col-0 plants supplied with TSpm suggests that PAO 1, 3, and 5 are the main PAOs involved in TSpm catabolism. In summary, TSpm exhibited the potential to perform defensive functions previously reported for its structural isomer Spm, and the relevance of these findings is discussed in the context of ACL5 expression and TSpm concentration in planta. Moreover, this work demonstrates that manipulation of TSpm metabolism modifies plant resistance to pathogens.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/ert012