FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential

Fourier transform infrared (FTIR) spectra were measured from cells of Microcystis aeruginosa and Protoceratium reticulatum, whose growth rates were manipulated by the availability of nutrients or light. As expected, the macromolecular composition changed in response to the treatments. These changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2012-12, Vol.146 (4), p.427-438
Hauptverfasser: Jebsen, Christian, Norici, Alessandra, Wagner, Heiko, Palmucci, Matteo, Giordano, Mario, Wilhelm, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 4
container_start_page 427
container_title Physiologia plantarum
container_volume 146
creator Jebsen, Christian
Norici, Alessandra
Wagner, Heiko
Palmucci, Matteo
Giordano, Mario
Wilhelm, Christian
description Fourier transform infrared (FTIR) spectra were measured from cells of Microcystis aeruginosa and Protoceratium reticulatum, whose growth rates were manipulated by the availability of nutrients or light. As expected, the macromolecular composition changed in response to the treatments. These changes were species‐specific and depended on the type of perturbation applied to the growth regime. Microcystis aeruginosa showed an increase in the carbohydrate‐to‐protein ratio with decreased growth rates, under nutrient limitation, whereas light limitation induced a decrease of the carbohydrate‐to‐protein ratio with decreasing proliferation rates. The macromolecular pools of P. reticulatum showed a higher degree of compositional homeostasis. Only when the lowest light irradiance and nutrient availability were supplied, an increase of the carbohydrate‐to‐protein FTIR absorbance ratio was observed. A species‐specific partial least squares (PLS) model was developed using the whole FTIR spectra. This model afforded a very high correlation between the predicted and the measured growth rates, regardless of the growth conditions. On the contrary, the prediction based on absorption band ratios generally used in FTIR studies would strongly depend on growth conditions. This new computational method could constitute a substantial improvement in the early warning systems of algal blooms and, in general, for the study of algal growth, e.g. in biotechnology. Furthermore, these results confirm the suitability of FTIR spectroscopy as a tool to map complex biological processes like growth under different environmental conditions.
doi_str_mv 10.1111/j.1399-3054.2012.01636.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1348481499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1151032667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5316-a59426b6d2f56ef3a2ae36058fae34470b8d720320520cb7b9233701187b86253</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhi3ExErhLyBLCImbZP6InfiCC1TRbVK1DTQEd5aTOq1LGgc70dp_z8lairSbYVk6R_bz-hyfFyFMSUphXWxSypVKOBFZyghlKaGSy3T3Ak1OFy_RhBBOE8Vpfo5ex7ghQEnKXqFzxkRGGFET5Of3199w7GzVB4N9jU2zMs3jgbMRV6bFpcVDtEtsIu7W--h841euAqh27cqGLri2j7j3AEQbIVtbF7Cp-gGYVfAP_Rp3vrdt70zzBp3Vpon27TFO0ff5l_vZVbK4vbyefV4kleBUJkaojMlSLlktpK25YcZySURRQ8yynJTFMmeEMyIYqcq8VIzznFBa5GUhmeBT9PHwbhf878HGXm9drGzTmNb6IWrKsyIraKbU8ygVFCpJmQP6_gm68UNo4SNAZUQJzqCpKSoOVBV8jMHWGma0NWGvKdGjf3qjR5v0aJMe_dOP_ukdSN8dCwzl1i5Pwr-GAfDhCJgIHtTBtJWL_zgwGHYB3KcD9-Aau__vBvTd3WLMQJ8c9C72dnfSm_BLwxxyoX_cXGpxpWZk_nOuv_I_1MXDCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1140953220</pqid></control><display><type>article</type><title>FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jebsen, Christian ; Norici, Alessandra ; Wagner, Heiko ; Palmucci, Matteo ; Giordano, Mario ; Wilhelm, Christian</creator><creatorcontrib>Jebsen, Christian ; Norici, Alessandra ; Wagner, Heiko ; Palmucci, Matteo ; Giordano, Mario ; Wilhelm, Christian</creatorcontrib><description>Fourier transform infrared (FTIR) spectra were measured from cells of Microcystis aeruginosa and Protoceratium reticulatum, whose growth rates were manipulated by the availability of nutrients or light. As expected, the macromolecular composition changed in response to the treatments. These changes were species‐specific and depended on the type of perturbation applied to the growth regime. Microcystis aeruginosa showed an increase in the carbohydrate‐to‐protein ratio with decreased growth rates, under nutrient limitation, whereas light limitation induced a decrease of the carbohydrate‐to‐protein ratio with decreasing proliferation rates. The macromolecular pools of P. reticulatum showed a higher degree of compositional homeostasis. Only when the lowest light irradiance and nutrient availability were supplied, an increase of the carbohydrate‐to‐protein FTIR absorbance ratio was observed. A species‐specific partial least squares (PLS) model was developed using the whole FTIR spectra. This model afforded a very high correlation between the predicted and the measured growth rates, regardless of the growth conditions. On the contrary, the prediction based on absorption band ratios generally used in FTIR studies would strongly depend on growth conditions. This new computational method could constitute a substantial improvement in the early warning systems of algal blooms and, in general, for the study of algal growth, e.g. in biotechnology. Furthermore, these results confirm the suitability of FTIR spectroscopy as a tool to map complex biological processes like growth under different environmental conditions.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/j.1399-3054.2012.01636.x</identifier><identifier>PMID: 22540209</identifier><identifier>CODEN: PHPLAI</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - physiology ; Biological and medical sciences ; Biomarkers - chemistry ; Carbohydrates ; Carbohydrates - chemistry ; Carbohydrates - physiology ; Computational Biology - methods ; Dinoflagellida - chemistry ; Dinoflagellida - growth &amp; development ; Dinoflagellida - physiology ; Dinoflagellida - radiation effects ; Fundamental and applied biological sciences. Psychology ; Least-Squares Analysis ; Light ; Microcystis - chemistry ; Microcystis - growth &amp; development ; Microcystis - physiology ; Microcystis - radiation effects ; Microcystis aeruginosa ; Nitrogen - chemistry ; Phosphorus - chemistry ; Plant physiology and development ; Proteins ; Protoceratium reticulatum ; Protozoan Proteins - chemistry ; Protozoan Proteins - physiology ; Species Specificity ; Spectroscopy, Fourier Transform Infrared - methods ; Spectrum analysis ; Studies</subject><ispartof>Physiologia plantarum, 2012-12, Vol.146 (4), p.427-438</ispartof><rights>Copyright © Physiologia Plantarum 2012</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © Physiologia Plantarum 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5316-a59426b6d2f56ef3a2ae36058fae34470b8d720320520cb7b9233701187b86253</citedby><cites>FETCH-LOGICAL-c5316-a59426b6d2f56ef3a2ae36058fae34470b8d720320520cb7b9233701187b86253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1399-3054.2012.01636.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1399-3054.2012.01636.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26616618$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22540209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jebsen, Christian</creatorcontrib><creatorcontrib>Norici, Alessandra</creatorcontrib><creatorcontrib>Wagner, Heiko</creatorcontrib><creatorcontrib>Palmucci, Matteo</creatorcontrib><creatorcontrib>Giordano, Mario</creatorcontrib><creatorcontrib>Wilhelm, Christian</creatorcontrib><title>FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Fourier transform infrared (FTIR) spectra were measured from cells of Microcystis aeruginosa and Protoceratium reticulatum, whose growth rates were manipulated by the availability of nutrients or light. As expected, the macromolecular composition changed in response to the treatments. These changes were species‐specific and depended on the type of perturbation applied to the growth regime. Microcystis aeruginosa showed an increase in the carbohydrate‐to‐protein ratio with decreased growth rates, under nutrient limitation, whereas light limitation induced a decrease of the carbohydrate‐to‐protein ratio with decreasing proliferation rates. The macromolecular pools of P. reticulatum showed a higher degree of compositional homeostasis. Only when the lowest light irradiance and nutrient availability were supplied, an increase of the carbohydrate‐to‐protein FTIR absorbance ratio was observed. A species‐specific partial least squares (PLS) model was developed using the whole FTIR spectra. This model afforded a very high correlation between the predicted and the measured growth rates, regardless of the growth conditions. On the contrary, the prediction based on absorption band ratios generally used in FTIR studies would strongly depend on growth conditions. This new computational method could constitute a substantial improvement in the early warning systems of algal blooms and, in general, for the study of algal growth, e.g. in biotechnology. Furthermore, these results confirm the suitability of FTIR spectroscopy as a tool to map complex biological processes like growth under different environmental conditions.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - physiology</subject><subject>Biological and medical sciences</subject><subject>Biomarkers - chemistry</subject><subject>Carbohydrates</subject><subject>Carbohydrates - chemistry</subject><subject>Carbohydrates - physiology</subject><subject>Computational Biology - methods</subject><subject>Dinoflagellida - chemistry</subject><subject>Dinoflagellida - growth &amp; development</subject><subject>Dinoflagellida - physiology</subject><subject>Dinoflagellida - radiation effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Least-Squares Analysis</subject><subject>Light</subject><subject>Microcystis - chemistry</subject><subject>Microcystis - growth &amp; development</subject><subject>Microcystis - physiology</subject><subject>Microcystis - radiation effects</subject><subject>Microcystis aeruginosa</subject><subject>Nitrogen - chemistry</subject><subject>Phosphorus - chemistry</subject><subject>Plant physiology and development</subject><subject>Proteins</subject><subject>Protoceratium reticulatum</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - physiology</subject><subject>Species Specificity</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Spectrum analysis</subject><subject>Studies</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1v0zAUhi3ExErhLyBLCImbZP6InfiCC1TRbVK1DTQEd5aTOq1LGgc70dp_z8lairSbYVk6R_bz-hyfFyFMSUphXWxSypVKOBFZyghlKaGSy3T3Ak1OFy_RhBBOE8Vpfo5ex7ghQEnKXqFzxkRGGFET5Of3199w7GzVB4N9jU2zMs3jgbMRV6bFpcVDtEtsIu7W--h841euAqh27cqGLri2j7j3AEQbIVtbF7Cp-gGYVfAP_Rp3vrdt70zzBp3Vpon27TFO0ff5l_vZVbK4vbyefV4kleBUJkaojMlSLlktpK25YcZySURRQ8yynJTFMmeEMyIYqcq8VIzznFBa5GUhmeBT9PHwbhf878HGXm9drGzTmNb6IWrKsyIraKbU8ygVFCpJmQP6_gm68UNo4SNAZUQJzqCpKSoOVBV8jMHWGma0NWGvKdGjf3qjR5v0aJMe_dOP_ukdSN8dCwzl1i5Pwr-GAfDhCJgIHtTBtJWL_zgwGHYB3KcD9-Aau__vBvTd3WLMQJ8c9C72dnfSm_BLwxxyoX_cXGpxpWZk_nOuv_I_1MXDCA</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Jebsen, Christian</creator><creator>Norici, Alessandra</creator><creator>Wagner, Heiko</creator><creator>Palmucci, Matteo</creator><creator>Giordano, Mario</creator><creator>Wilhelm, Christian</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>201212</creationdate><title>FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential</title><author>Jebsen, Christian ; Norici, Alessandra ; Wagner, Heiko ; Palmucci, Matteo ; Giordano, Mario ; Wilhelm, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5316-a59426b6d2f56ef3a2ae36058fae34470b8d720320520cb7b9233701187b86253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - physiology</topic><topic>Biological and medical sciences</topic><topic>Biomarkers - chemistry</topic><topic>Carbohydrates</topic><topic>Carbohydrates - chemistry</topic><topic>Carbohydrates - physiology</topic><topic>Computational Biology - methods</topic><topic>Dinoflagellida - chemistry</topic><topic>Dinoflagellida - growth &amp; development</topic><topic>Dinoflagellida - physiology</topic><topic>Dinoflagellida - radiation effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Least-Squares Analysis</topic><topic>Light</topic><topic>Microcystis - chemistry</topic><topic>Microcystis - growth &amp; development</topic><topic>Microcystis - physiology</topic><topic>Microcystis - radiation effects</topic><topic>Microcystis aeruginosa</topic><topic>Nitrogen - chemistry</topic><topic>Phosphorus - chemistry</topic><topic>Plant physiology and development</topic><topic>Proteins</topic><topic>Protoceratium reticulatum</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - physiology</topic><topic>Species Specificity</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Spectrum analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jebsen, Christian</creatorcontrib><creatorcontrib>Norici, Alessandra</creatorcontrib><creatorcontrib>Wagner, Heiko</creatorcontrib><creatorcontrib>Palmucci, Matteo</creatorcontrib><creatorcontrib>Giordano, Mario</creatorcontrib><creatorcontrib>Wilhelm, Christian</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jebsen, Christian</au><au>Norici, Alessandra</au><au>Wagner, Heiko</au><au>Palmucci, Matteo</au><au>Giordano, Mario</au><au>Wilhelm, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2012-12</date><risdate>2012</risdate><volume>146</volume><issue>4</issue><spage>427</spage><epage>438</epage><pages>427-438</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><coden>PHPLAI</coden><abstract>Fourier transform infrared (FTIR) spectra were measured from cells of Microcystis aeruginosa and Protoceratium reticulatum, whose growth rates were manipulated by the availability of nutrients or light. As expected, the macromolecular composition changed in response to the treatments. These changes were species‐specific and depended on the type of perturbation applied to the growth regime. Microcystis aeruginosa showed an increase in the carbohydrate‐to‐protein ratio with decreased growth rates, under nutrient limitation, whereas light limitation induced a decrease of the carbohydrate‐to‐protein ratio with decreasing proliferation rates. The macromolecular pools of P. reticulatum showed a higher degree of compositional homeostasis. Only when the lowest light irradiance and nutrient availability were supplied, an increase of the carbohydrate‐to‐protein FTIR absorbance ratio was observed. A species‐specific partial least squares (PLS) model was developed using the whole FTIR spectra. This model afforded a very high correlation between the predicted and the measured growth rates, regardless of the growth conditions. On the contrary, the prediction based on absorption band ratios generally used in FTIR studies would strongly depend on growth conditions. This new computational method could constitute a substantial improvement in the early warning systems of algal blooms and, in general, for the study of algal growth, e.g. in biotechnology. Furthermore, these results confirm the suitability of FTIR spectroscopy as a tool to map complex biological processes like growth under different environmental conditions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22540209</pmid><doi>10.1111/j.1399-3054.2012.01636.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2012-12, Vol.146 (4), p.427-438
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_miscellaneous_1348481499
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacterial Proteins - chemistry
Bacterial Proteins - physiology
Biological and medical sciences
Biomarkers - chemistry
Carbohydrates
Carbohydrates - chemistry
Carbohydrates - physiology
Computational Biology - methods
Dinoflagellida - chemistry
Dinoflagellida - growth & development
Dinoflagellida - physiology
Dinoflagellida - radiation effects
Fundamental and applied biological sciences. Psychology
Least-Squares Analysis
Light
Microcystis - chemistry
Microcystis - growth & development
Microcystis - physiology
Microcystis - radiation effects
Microcystis aeruginosa
Nitrogen - chemistry
Phosphorus - chemistry
Plant physiology and development
Proteins
Protoceratium reticulatum
Protozoan Proteins - chemistry
Protozoan Proteins - physiology
Species Specificity
Spectroscopy, Fourier Transform Infrared - methods
Spectrum analysis
Studies
title FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FTIR%20spectra%20of%20algal%20species%20can%20be%20used%20as%20physiological%20fingerprints%20to%20assess%20their%20actual%20growth%20potential&rft.jtitle=Physiologia%20plantarum&rft.au=Jebsen,%20Christian&rft.date=2012-12&rft.volume=146&rft.issue=4&rft.spage=427&rft.epage=438&rft.pages=427-438&rft.issn=0031-9317&rft.eissn=1399-3054&rft.coden=PHPLAI&rft_id=info:doi/10.1111/j.1399-3054.2012.01636.x&rft_dat=%3Cproquest_cross%3E1151032667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1140953220&rft_id=info:pmid/22540209&rfr_iscdi=true