Comparing Discrete Distributions: Survey Validation and Survey Experiments
Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolm...
Gespeichert in:
Veröffentlicht in: | Political analysis 2013, Vol.21 (1), p.70-85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | Political analysis |
container_volume | 21 |
creator | Gawande, Kishore Reinhardt, Gina Yannitell Silva, Carol L. Bearfield, Domonic |
description | Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting. |
doi_str_mv | 10.1093/pan/mps036 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1347778872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1093_pan_mps036</cupid><jstor_id>23359693</jstor_id><sourcerecordid>23359693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e3f5d03d74b49f20970d2205f2d7cb1e5733b486afbb01f73ce91249f6d6dd4e3</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoOI5u3AsFNyLWyatJ407G8cWACx_bkDbp0KEvk1Scf29KRxFd3cPh49x7DwDHCF4iKMisU82s7hwkbAdMEOUspiIVu0FDymMkUr4PDpxbQ4g4F2ICHudt3SlbNqvopnS5Nd4Mwtsy633ZNu4qeu7th9lEb6oqtRq8SDX62118dsaWtWm8OwR7haqcOdrOKXi9XbzM7-Pl093D_HoZ5yRBPjakSDQkmtOMigJDwaHGGCYF1jzPkEk4IRlNmSqyDKKCk9wIhAPKNNOaGjIFZ2NuZ9v33jgv63C5qSrVmLZ3EhHKOU9TjgN6-gddt71twnUSYSYQF4iRQJ2PVG5b56wpZBdeUnYjEZRDrTLUKsdaA3wywmvnW_tDYkISwcQQdrENU3VmS70yv3b-j_sCbWKE8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1269179163</pqid></control><display><type>article</type><title>Comparing Discrete Distributions: Survey Validation and Survey Experiments</title><source>Worldwide Political Science Abstracts</source><source>Jstor Complete Legacy</source><source>Political Science Complete</source><source>Cambridge University Press Journals Complete</source><creator>Gawande, Kishore ; Reinhardt, Gina Yannitell ; Silva, Carol L. ; Bearfield, Domonic</creator><creatorcontrib>Gawande, Kishore ; Reinhardt, Gina Yannitell ; Silva, Carol L. ; Bearfield, Domonic</creatorcontrib><description>Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1093/pan/mps036</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Comparative analysis ; Control groups ; Experiments ; Frequency distribution ; Hurricanes ; Monte Carlo simulation ; Natural Disasters ; Null hypothesis ; Polls & surveys ; Population distributions ; Power ; Probabilities ; Probability distribution ; Regular Articles ; Response rates ; Sample size ; Sampling distributions ; Simulation ; Statistics ; Survey sampling ; Test methods ; Validity</subject><ispartof>Political analysis, 2013, Vol.21 (1), p.70-85</ispartof><rights>Copyright © The Author 2013. Published by Oxford University Press on behalf of the Society for Political Methodology</rights><rights>2013 The Society for Political Methodology</rights><rights>Copyright Oxford Publishing Limited(England) Winter 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e3f5d03d74b49f20970d2205f2d7cb1e5733b486afbb01f73ce91249f6d6dd4e3</citedby><cites>FETCH-LOGICAL-c351t-e3f5d03d74b49f20970d2205f2d7cb1e5733b486afbb01f73ce91249f6d6dd4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23359693$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198700013280/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,4009,27902,27903,27904,55606,57995,58228</link.rule.ids></links><search><creatorcontrib>Gawande, Kishore</creatorcontrib><creatorcontrib>Reinhardt, Gina Yannitell</creatorcontrib><creatorcontrib>Silva, Carol L.</creatorcontrib><creatorcontrib>Bearfield, Domonic</creatorcontrib><title>Comparing Discrete Distributions: Survey Validation and Survey Experiments</title><title>Political analysis</title><addtitle>Polit. anal</addtitle><description>Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting.</description><subject>Comparative analysis</subject><subject>Control groups</subject><subject>Experiments</subject><subject>Frequency distribution</subject><subject>Hurricanes</subject><subject>Monte Carlo simulation</subject><subject>Natural Disasters</subject><subject>Null hypothesis</subject><subject>Polls & surveys</subject><subject>Population distributions</subject><subject>Power</subject><subject>Probabilities</subject><subject>Probability distribution</subject><subject>Regular Articles</subject><subject>Response rates</subject><subject>Sample size</subject><subject>Sampling distributions</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Survey sampling</subject><subject>Test methods</subject><subject>Validity</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNplkEtLxDAUhYMoOI5u3AsFNyLWyatJ407G8cWACx_bkDbp0KEvk1Scf29KRxFd3cPh49x7DwDHCF4iKMisU82s7hwkbAdMEOUspiIVu0FDymMkUr4PDpxbQ4g4F2ICHudt3SlbNqvopnS5Nd4Mwtsy633ZNu4qeu7th9lEb6oqtRq8SDX62118dsaWtWm8OwR7haqcOdrOKXi9XbzM7-Pl093D_HoZ5yRBPjakSDQkmtOMigJDwaHGGCYF1jzPkEk4IRlNmSqyDKKCk9wIhAPKNNOaGjIFZ2NuZ9v33jgv63C5qSrVmLZ3EhHKOU9TjgN6-gddt71twnUSYSYQF4iRQJ2PVG5b56wpZBdeUnYjEZRDrTLUKsdaA3wywmvnW_tDYkISwcQQdrENU3VmS70yv3b-j_sCbWKE8A</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Gawande, Kishore</creator><creator>Reinhardt, Gina Yannitell</creator><creator>Silva, Carol L.</creator><creator>Bearfield, Domonic</creator><general>Cambridge University Press</general><general>The University of Michigan Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>2013</creationdate><title>Comparing Discrete Distributions: Survey Validation and Survey Experiments</title><author>Gawande, Kishore ; Reinhardt, Gina Yannitell ; Silva, Carol L. ; Bearfield, Domonic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e3f5d03d74b49f20970d2205f2d7cb1e5733b486afbb01f73ce91249f6d6dd4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Comparative analysis</topic><topic>Control groups</topic><topic>Experiments</topic><topic>Frequency distribution</topic><topic>Hurricanes</topic><topic>Monte Carlo simulation</topic><topic>Natural Disasters</topic><topic>Null hypothesis</topic><topic>Polls & surveys</topic><topic>Population distributions</topic><topic>Power</topic><topic>Probabilities</topic><topic>Probability distribution</topic><topic>Regular Articles</topic><topic>Response rates</topic><topic>Sample size</topic><topic>Sampling distributions</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Survey sampling</topic><topic>Test methods</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawande, Kishore</creatorcontrib><creatorcontrib>Reinhardt, Gina Yannitell</creatorcontrib><creatorcontrib>Silva, Carol L.</creatorcontrib><creatorcontrib>Bearfield, Domonic</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawande, Kishore</au><au>Reinhardt, Gina Yannitell</au><au>Silva, Carol L.</au><au>Bearfield, Domonic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing Discrete Distributions: Survey Validation and Survey Experiments</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. anal</addtitle><date>2013</date><risdate>2013</risdate><volume>21</volume><issue>1</issue><spage>70</spage><epage>85</epage><pages>70-85</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1093/pan/mps036</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-1987 |
ispartof | Political analysis, 2013, Vol.21 (1), p.70-85 |
issn | 1047-1987 1476-4989 |
language | eng |
recordid | cdi_proquest_miscellaneous_1347778872 |
source | Worldwide Political Science Abstracts; Jstor Complete Legacy; Political Science Complete; Cambridge University Press Journals Complete |
subjects | Comparative analysis Control groups Experiments Frequency distribution Hurricanes Monte Carlo simulation Natural Disasters Null hypothesis Polls & surveys Population distributions Power Probabilities Probability distribution Regular Articles Response rates Sample size Sampling distributions Simulation Statistics Survey sampling Test methods Validity |
title | Comparing Discrete Distributions: Survey Validation and Survey Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20Discrete%20Distributions:%20Survey%20Validation%20and%20Survey%20Experiments&rft.jtitle=Political%20analysis&rft.au=Gawande,%20Kishore&rft.date=2013&rft.volume=21&rft.issue=1&rft.spage=70&rft.epage=85&rft.pages=70-85&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1093/pan/mps036&rft_dat=%3Cjstor_proqu%3E23359693%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1269179163&rft_id=info:pmid/&rft_cupid=10_1093_pan_mps036&rft_jstor_id=23359693&rfr_iscdi=true |