Comparing Discrete Distributions: Survey Validation and Survey Experiments

Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Political analysis 2013, Vol.21 (1), p.70-85
Hauptverfasser: Gawande, Kishore, Reinhardt, Gina Yannitell, Silva, Carol L., Bearfield, Domonic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 70
container_title Political analysis
container_volume 21
creator Gawande, Kishore
Reinhardt, Gina Yannitell
Silva, Carol L.
Bearfield, Domonic
description Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting.
doi_str_mv 10.1093/pan/mps036
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1347778872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1093_pan_mps036</cupid><jstor_id>23359693</jstor_id><sourcerecordid>23359693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e3f5d03d74b49f20970d2205f2d7cb1e5733b486afbb01f73ce91249f6d6dd4e3</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoOI5u3AsFNyLWyatJ407G8cWACx_bkDbp0KEvk1Scf29KRxFd3cPh49x7DwDHCF4iKMisU82s7hwkbAdMEOUspiIVu0FDymMkUr4PDpxbQ4g4F2ICHudt3SlbNqvopnS5Nd4Mwtsy633ZNu4qeu7th9lEb6oqtRq8SDX62118dsaWtWm8OwR7haqcOdrOKXi9XbzM7-Pl093D_HoZ5yRBPjakSDQkmtOMigJDwaHGGCYF1jzPkEk4IRlNmSqyDKKCk9wIhAPKNNOaGjIFZ2NuZ9v33jgv63C5qSrVmLZ3EhHKOU9TjgN6-gddt71twnUSYSYQF4iRQJ2PVG5b56wpZBdeUnYjEZRDrTLUKsdaA3wywmvnW_tDYkISwcQQdrENU3VmS70yv3b-j_sCbWKE8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1269179163</pqid></control><display><type>article</type><title>Comparing Discrete Distributions: Survey Validation and Survey Experiments</title><source>Worldwide Political Science Abstracts</source><source>Jstor Complete Legacy</source><source>Political Science Complete</source><source>Cambridge University Press Journals Complete</source><creator>Gawande, Kishore ; Reinhardt, Gina Yannitell ; Silva, Carol L. ; Bearfield, Domonic</creator><creatorcontrib>Gawande, Kishore ; Reinhardt, Gina Yannitell ; Silva, Carol L. ; Bearfield, Domonic</creatorcontrib><description>Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1093/pan/mps036</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Comparative analysis ; Control groups ; Experiments ; Frequency distribution ; Hurricanes ; Monte Carlo simulation ; Natural Disasters ; Null hypothesis ; Polls &amp; surveys ; Population distributions ; Power ; Probabilities ; Probability distribution ; Regular Articles ; Response rates ; Sample size ; Sampling distributions ; Simulation ; Statistics ; Survey sampling ; Test methods ; Validity</subject><ispartof>Political analysis, 2013, Vol.21 (1), p.70-85</ispartof><rights>Copyright © The Author 2013. Published by Oxford University Press on behalf of the Society for Political Methodology</rights><rights>2013 The Society for Political Methodology</rights><rights>Copyright Oxford Publishing Limited(England) Winter 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e3f5d03d74b49f20970d2205f2d7cb1e5733b486afbb01f73ce91249f6d6dd4e3</citedby><cites>FETCH-LOGICAL-c351t-e3f5d03d74b49f20970d2205f2d7cb1e5733b486afbb01f73ce91249f6d6dd4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23359693$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198700013280/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,4009,27902,27903,27904,55606,57995,58228</link.rule.ids></links><search><creatorcontrib>Gawande, Kishore</creatorcontrib><creatorcontrib>Reinhardt, Gina Yannitell</creatorcontrib><creatorcontrib>Silva, Carol L.</creatorcontrib><creatorcontrib>Bearfield, Domonic</creatorcontrib><title>Comparing Discrete Distributions: Survey Validation and Survey Experiments</title><title>Political analysis</title><addtitle>Polit. anal</addtitle><description>Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting.</description><subject>Comparative analysis</subject><subject>Control groups</subject><subject>Experiments</subject><subject>Frequency distribution</subject><subject>Hurricanes</subject><subject>Monte Carlo simulation</subject><subject>Natural Disasters</subject><subject>Null hypothesis</subject><subject>Polls &amp; surveys</subject><subject>Population distributions</subject><subject>Power</subject><subject>Probabilities</subject><subject>Probability distribution</subject><subject>Regular Articles</subject><subject>Response rates</subject><subject>Sample size</subject><subject>Sampling distributions</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Survey sampling</subject><subject>Test methods</subject><subject>Validity</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNplkEtLxDAUhYMoOI5u3AsFNyLWyatJ407G8cWACx_bkDbp0KEvk1Scf29KRxFd3cPh49x7DwDHCF4iKMisU82s7hwkbAdMEOUspiIVu0FDymMkUr4PDpxbQ4g4F2ICHudt3SlbNqvopnS5Nd4Mwtsy633ZNu4qeu7th9lEb6oqtRq8SDX62118dsaWtWm8OwR7haqcOdrOKXi9XbzM7-Pl093D_HoZ5yRBPjakSDQkmtOMigJDwaHGGCYF1jzPkEk4IRlNmSqyDKKCk9wIhAPKNNOaGjIFZ2NuZ9v33jgv63C5qSrVmLZ3EhHKOU9TjgN6-gddt71twnUSYSYQF4iRQJ2PVG5b56wpZBdeUnYjEZRDrTLUKsdaA3wywmvnW_tDYkISwcQQdrENU3VmS70yv3b-j_sCbWKE8A</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Gawande, Kishore</creator><creator>Reinhardt, Gina Yannitell</creator><creator>Silva, Carol L.</creator><creator>Bearfield, Domonic</creator><general>Cambridge University Press</general><general>The University of Michigan Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>2013</creationdate><title>Comparing Discrete Distributions: Survey Validation and Survey Experiments</title><author>Gawande, Kishore ; Reinhardt, Gina Yannitell ; Silva, Carol L. ; Bearfield, Domonic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e3f5d03d74b49f20970d2205f2d7cb1e5733b486afbb01f73ce91249f6d6dd4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Comparative analysis</topic><topic>Control groups</topic><topic>Experiments</topic><topic>Frequency distribution</topic><topic>Hurricanes</topic><topic>Monte Carlo simulation</topic><topic>Natural Disasters</topic><topic>Null hypothesis</topic><topic>Polls &amp; surveys</topic><topic>Population distributions</topic><topic>Power</topic><topic>Probabilities</topic><topic>Probability distribution</topic><topic>Regular Articles</topic><topic>Response rates</topic><topic>Sample size</topic><topic>Sampling distributions</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Survey sampling</topic><topic>Test methods</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawande, Kishore</creatorcontrib><creatorcontrib>Reinhardt, Gina Yannitell</creatorcontrib><creatorcontrib>Silva, Carol L.</creatorcontrib><creatorcontrib>Bearfield, Domonic</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawande, Kishore</au><au>Reinhardt, Gina Yannitell</au><au>Silva, Carol L.</au><au>Bearfield, Domonic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing Discrete Distributions: Survey Validation and Survey Experiments</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. anal</addtitle><date>2013</date><risdate>2013</risdate><volume>21</volume><issue>1</issue><spage>70</spage><epage>85</epage><pages>70-85</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>Field survey experiments often measure amorphous concepts in discretely ordered categories, with postsurvey analytics that fail to account for the discrete attributes of the data. This article demonstrates the use of discrete distribution tests, specifically the chi-square test and the discrete Kolmogorov—Smirnov (KS) test, as simple devices for comparing and analyzing ordered responses typically found in surveys. In Monte Carlo simulations, we find the discrete KS test to have more power than the chi-square test when distributions are right or left skewed, regardless of the sample size or the number of alternatives. The discrete KS test has at least as much power as the chi-square, and sometimes more so, when distributions are bi-modal or approximately uniform and samples are small. After deriving rules of usage for the two tests, we implement them in two cases typical of survey analysis. Using our own data collected after Hurricanes Katrina and Rita, we employ our rules to both validate and assess treatment effects in a natural experimental setting.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1093/pan/mps036</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-1987
ispartof Political analysis, 2013, Vol.21 (1), p.70-85
issn 1047-1987
1476-4989
language eng
recordid cdi_proquest_miscellaneous_1347778872
source Worldwide Political Science Abstracts; Jstor Complete Legacy; Political Science Complete; Cambridge University Press Journals Complete
subjects Comparative analysis
Control groups
Experiments
Frequency distribution
Hurricanes
Monte Carlo simulation
Natural Disasters
Null hypothesis
Polls & surveys
Population distributions
Power
Probabilities
Probability distribution
Regular Articles
Response rates
Sample size
Sampling distributions
Simulation
Statistics
Survey sampling
Test methods
Validity
title Comparing Discrete Distributions: Survey Validation and Survey Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20Discrete%20Distributions:%20Survey%20Validation%20and%20Survey%20Experiments&rft.jtitle=Political%20analysis&rft.au=Gawande,%20Kishore&rft.date=2013&rft.volume=21&rft.issue=1&rft.spage=70&rft.epage=85&rft.pages=70-85&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1093/pan/mps036&rft_dat=%3Cjstor_proqu%3E23359693%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1269179163&rft_id=info:pmid/&rft_cupid=10_1093_pan_mps036&rft_jstor_id=23359693&rfr_iscdi=true