Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate
Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of c...
Gespeichert in:
Veröffentlicht in: | Cell 2013-04, Vol.153 (3), p.535-549 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 549 |
---|---|
container_issue | 3 |
container_start_page | 535 |
container_title | Cell |
container_volume | 153 |
creator | Stahl, Ronny Walcher, Tessa De Juan Romero, Camino Pilz, Gregor Alexander Cappello, Silvia Irmler, Martin Sanz-Aquela, José Miguel Beckers, Johannes Blum, Robert Borrell, Víctor Götz, Magdalena |
description | Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.
[Display omitted]
•Trnp1 is a nuclear regulator of radial glial cell fate•Knockdown of Trnp1 results in gyrification (folding) of a naturally smooth brain•Regulation of a single factor orchestrates most characteristics of gyrated brains•Trnp1 associates with DNA and regulates gene expression but has no known motifs
Trnp1 is a DNA-associated protein that regulates cortical expansion—both radial and tangential—and gyrification during development. Its expression pattern in the human brain correlates with regional folding levels, and its conservation among mammals suggests that it may have played a role during the evolution of the mammalian brain. |
doi_str_mv | 10.1016/j.cell.2013.03.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1347256068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867413003498</els_id><sourcerecordid>1347256068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-b280a31d05f0da1189dc20fb5e8be0ea3112f8cfed571f1c05d270934b5d9a243</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi0EoiHwBziAj1w2jL3r_ZC4oKhpkYqQSnu2vPY4OPLawd6g9t_jVUqPyCOPpXnmlfUQ8p7BhgFrPx82Gr3fcGD1Bkrx7gVZMRi6qmEdf0lWAAOv-rZrLsibnA8A0AshXpMLXrec83pYEXuXwpHRW9yfvJox08uHowrZxUBVMHQXvXFhT6Ol8y-k39U0Ke9UoFtMOCbl6TamGR_o-FheYU7RL-ytMq7Mrvxy70ruW_LKKp_x3VNfk_vd5d32urr5cfVt-_Wm0s0AczXyHlTNDAgLRjHWD0ZzsKPAfkTAMmLc9tqiER2zTIMwvIOhbkZhBsWbek0-nXOPKf4-YZ7l5PJiSQWMpyxZ3XRctND2BeVnVKeYc0Irj8lNKj1KBnLxKw9y2ZSLXwmleFeWPjzln8YJzfPKP6EF-HgGrIpS7ZPL8v5nSWiLfKhFOWvy5Uxg8fDHYZJZOwwajUuoZ2mi-98P_gIC8pRu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347256068</pqid></control><display><type>article</type><title>Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stahl, Ronny ; Walcher, Tessa ; De Juan Romero, Camino ; Pilz, Gregor Alexander ; Cappello, Silvia ; Irmler, Martin ; Sanz-Aquela, José Miguel ; Beckers, Johannes ; Blum, Robert ; Borrell, Víctor ; Götz, Magdalena</creator><creatorcontrib>Stahl, Ronny ; Walcher, Tessa ; De Juan Romero, Camino ; Pilz, Gregor Alexander ; Cappello, Silvia ; Irmler, Martin ; Sanz-Aquela, José Miguel ; Beckers, Johannes ; Blum, Robert ; Borrell, Víctor ; Götz, Magdalena</creatorcontrib><description>Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.
[Display omitted]
•Trnp1 is a nuclear regulator of radial glial cell fate•Knockdown of Trnp1 results in gyrification (folding) of a naturally smooth brain•Regulation of a single factor orchestrates most characteristics of gyrated brains•Trnp1 associates with DNA and regulates gene expression but has no known motifs
Trnp1 is a DNA-associated protein that regulates cortical expansion—both radial and tangential—and gyrification during development. Its expression pattern in the human brain correlates with regional folding levels, and its conservation among mammals suggests that it may have played a role during the evolution of the mammalian brain.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2013.03.027</identifier><identifier>PMID: 23622239</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; cerebral cortex ; Cerebral Cortex - cytology ; Cerebral Cortex - growth & development ; Embryo, Mammalian - metabolism ; evolution ; fetus ; Gene Knockdown Techniques ; Humans ; Mice ; Molecular Sequence Data ; Neural Stem Cells - metabolism ; neuroglia ; Neuroglia - metabolism ; Nuclear Proteins - chemistry ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; stem cells ; Transcriptional Activation</subject><ispartof>Cell, 2013-04, Vol.153 (3), p.535-549</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-b280a31d05f0da1189dc20fb5e8be0ea3112f8cfed571f1c05d270934b5d9a243</citedby><cites>FETCH-LOGICAL-c490t-b280a31d05f0da1189dc20fb5e8be0ea3112f8cfed571f1c05d270934b5d9a243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867413003498$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23622239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stahl, Ronny</creatorcontrib><creatorcontrib>Walcher, Tessa</creatorcontrib><creatorcontrib>De Juan Romero, Camino</creatorcontrib><creatorcontrib>Pilz, Gregor Alexander</creatorcontrib><creatorcontrib>Cappello, Silvia</creatorcontrib><creatorcontrib>Irmler, Martin</creatorcontrib><creatorcontrib>Sanz-Aquela, José Miguel</creatorcontrib><creatorcontrib>Beckers, Johannes</creatorcontrib><creatorcontrib>Blum, Robert</creatorcontrib><creatorcontrib>Borrell, Víctor</creatorcontrib><creatorcontrib>Götz, Magdalena</creatorcontrib><title>Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate</title><title>Cell</title><addtitle>Cell</addtitle><description>Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.
[Display omitted]
•Trnp1 is a nuclear regulator of radial glial cell fate•Knockdown of Trnp1 results in gyrification (folding) of a naturally smooth brain•Regulation of a single factor orchestrates most characteristics of gyrated brains•Trnp1 associates with DNA and regulates gene expression but has no known motifs
Trnp1 is a DNA-associated protein that regulates cortical expansion—both radial and tangential—and gyrification during development. Its expression pattern in the human brain correlates with regional folding levels, and its conservation among mammals suggests that it may have played a role during the evolution of the mammalian brain.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>cerebral cortex</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - growth & development</subject><subject>Embryo, Mammalian - metabolism</subject><subject>evolution</subject><subject>fetus</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Neural Stem Cells - metabolism</subject><subject>neuroglia</subject><subject>Neuroglia - metabolism</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>stem cells</subject><subject>Transcriptional Activation</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vEzEQhi0EoiHwBziAj1w2jL3r_ZC4oKhpkYqQSnu2vPY4OPLawd6g9t_jVUqPyCOPpXnmlfUQ8p7BhgFrPx82Gr3fcGD1Bkrx7gVZMRi6qmEdf0lWAAOv-rZrLsibnA8A0AshXpMLXrec83pYEXuXwpHRW9yfvJox08uHowrZxUBVMHQXvXFhT6Ol8y-k39U0Ke9UoFtMOCbl6TamGR_o-FheYU7RL-ytMq7Mrvxy70ruW_LKKp_x3VNfk_vd5d32urr5cfVt-_Wm0s0AczXyHlTNDAgLRjHWD0ZzsKPAfkTAMmLc9tqiER2zTIMwvIOhbkZhBsWbek0-nXOPKf4-YZ7l5PJiSQWMpyxZ3XRctND2BeVnVKeYc0Irj8lNKj1KBnLxKw9y2ZSLXwmleFeWPjzln8YJzfPKP6EF-HgGrIpS7ZPL8v5nSWiLfKhFOWvy5Uxg8fDHYZJZOwwajUuoZ2mi-98P_gIC8pRu</recordid><startdate>20130425</startdate><enddate>20130425</enddate><creator>Stahl, Ronny</creator><creator>Walcher, Tessa</creator><creator>De Juan Romero, Camino</creator><creator>Pilz, Gregor Alexander</creator><creator>Cappello, Silvia</creator><creator>Irmler, Martin</creator><creator>Sanz-Aquela, José Miguel</creator><creator>Beckers, Johannes</creator><creator>Blum, Robert</creator><creator>Borrell, Víctor</creator><creator>Götz, Magdalena</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130425</creationdate><title>Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate</title><author>Stahl, Ronny ; Walcher, Tessa ; De Juan Romero, Camino ; Pilz, Gregor Alexander ; Cappello, Silvia ; Irmler, Martin ; Sanz-Aquela, José Miguel ; Beckers, Johannes ; Blum, Robert ; Borrell, Víctor ; Götz, Magdalena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-b280a31d05f0da1189dc20fb5e8be0ea3112f8cfed571f1c05d270934b5d9a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>cerebral cortex</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - growth & development</topic><topic>Embryo, Mammalian - metabolism</topic><topic>evolution</topic><topic>fetus</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Neural Stem Cells - metabolism</topic><topic>neuroglia</topic><topic>Neuroglia - metabolism</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>stem cells</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stahl, Ronny</creatorcontrib><creatorcontrib>Walcher, Tessa</creatorcontrib><creatorcontrib>De Juan Romero, Camino</creatorcontrib><creatorcontrib>Pilz, Gregor Alexander</creatorcontrib><creatorcontrib>Cappello, Silvia</creatorcontrib><creatorcontrib>Irmler, Martin</creatorcontrib><creatorcontrib>Sanz-Aquela, José Miguel</creatorcontrib><creatorcontrib>Beckers, Johannes</creatorcontrib><creatorcontrib>Blum, Robert</creatorcontrib><creatorcontrib>Borrell, Víctor</creatorcontrib><creatorcontrib>Götz, Magdalena</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stahl, Ronny</au><au>Walcher, Tessa</au><au>De Juan Romero, Camino</au><au>Pilz, Gregor Alexander</au><au>Cappello, Silvia</au><au>Irmler, Martin</au><au>Sanz-Aquela, José Miguel</au><au>Beckers, Johannes</au><au>Blum, Robert</au><au>Borrell, Víctor</au><au>Götz, Magdalena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2013-04-25</date><risdate>2013</risdate><volume>153</volume><issue>3</issue><spage>535</spage><epage>549</epage><pages>535-549</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.
[Display omitted]
•Trnp1 is a nuclear regulator of radial glial cell fate•Knockdown of Trnp1 results in gyrification (folding) of a naturally smooth brain•Regulation of a single factor orchestrates most characteristics of gyrated brains•Trnp1 associates with DNA and regulates gene expression but has no known motifs
Trnp1 is a DNA-associated protein that regulates cortical expansion—both radial and tangential—and gyrification during development. Its expression pattern in the human brain correlates with regional folding levels, and its conservation among mammals suggests that it may have played a role during the evolution of the mammalian brain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23622239</pmid><doi>10.1016/j.cell.2013.03.027</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2013-04, Vol.153 (3), p.535-549 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_1347256068 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Amino Acid Sequence Animals cerebral cortex Cerebral Cortex - cytology Cerebral Cortex - growth & development Embryo, Mammalian - metabolism evolution fetus Gene Knockdown Techniques Humans Mice Molecular Sequence Data Neural Stem Cells - metabolism neuroglia Neuroglia - metabolism Nuclear Proteins - chemistry Nuclear Proteins - genetics Nuclear Proteins - metabolism stem cells Transcriptional Activation |
title | Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trnp1%20Regulates%20Expansion%20and%20Folding%20of%20the%20Mammalian%20Cerebral%20Cortex%20by%20Control%20of%20Radial%20Glial%20Fate&rft.jtitle=Cell&rft.au=Stahl,%20Ronny&rft.date=2013-04-25&rft.volume=153&rft.issue=3&rft.spage=535&rft.epage=549&rft.pages=535-549&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2013.03.027&rft_dat=%3Cproquest_cross%3E1347256068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1347256068&rft_id=info:pmid/23622239&rft_els_id=S0092867413003498&rfr_iscdi=true |