Long non‐coding RNAs in nuclear bodies
High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molec...
Gespeichert in:
Veröffentlicht in: | Development, growth & differentiation growth & differentiation, 2012-01, Vol.54 (1), p.44-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | Development, growth & differentiation |
container_volume | 54 |
creator | Ip, Joanna Y. Nakagawa, Shinichi |
description | High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molecularly indistinguishable from other protein‐coding mRNAs. Although the molecular functions of these lncRNAs have long remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, maintenance of subnuclear structures, transport of specific mRNAs, and control of pre‐mRNA splicing. Here, we discuss the functions of a distinct group of vertebrate‐specific lncRNAs, NEAT1/MENε/β/VINC, MALAT1/NEAT2, and Gomafu/RNCR2/MIAT, which accumulate abundantly within the nucleus as RNA components of specific nuclear bodies. |
doi_str_mv | 10.1111/j.1440-169X.2011.01303.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1345512772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024654373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5193-7df921230e7579e1b97eff80c74ae0397fbc9cf298aabdb622cdb8b40ba834153</originalsourceid><addsrcrecordid>eNqNkE1OwzAQRi0EoqVwBZRlNwnjvzpesKhaKEgVSAgkdpbtOChVmpSYiHbHETgjJ8GhpVvwZuyZN5-lh1CEIcHhXCwSzBjEeCSfEwIYJ4Ap0GR9gPr7wSHqA2ASYy5JD514vwAAxjA5Rj1CQIQZ7aPhvK5eoqquvj4-bZ0V4fFwN_ZRUUVVa0unm8iEtvOn6CjXpXdnuzpAT9dXj5ObeH4_u52M57HlWNJYZLkkIRmc4EI6bKRweZ6CFUw7oFLkxkqbE5lqbTIzIsRmJjUMjE4pw5wO0HCbu2rq19b5N7UsvHVlqStXt15hyjjHRAjyNwqEjTijggY03aK2qb1vXK5WTbHUzSZAqlOqFqozpzpzqlOqfpSqdVg93_3SmqXL9ou_DgNwuQXei9Jt_h2sprNpd6PfYSqDQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024654373</pqid></control><display><type>article</type><title>Long non‐coding RNAs in nuclear bodies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Open Access Titles of Japan</source><creator>Ip, Joanna Y. ; Nakagawa, Shinichi</creator><creatorcontrib>Ip, Joanna Y. ; Nakagawa, Shinichi</creatorcontrib><description>High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molecularly indistinguishable from other protein‐coding mRNAs. Although the molecular functions of these lncRNAs have long remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, maintenance of subnuclear structures, transport of specific mRNAs, and control of pre‐mRNA splicing. Here, we discuss the functions of a distinct group of vertebrate‐specific lncRNAs, NEAT1/MENε/β/VINC, MALAT1/NEAT2, and Gomafu/RNCR2/MIAT, which accumulate abundantly within the nucleus as RNA components of specific nuclear bodies.</description><identifier>ISSN: 0012-1592</identifier><identifier>EISSN: 1440-169X</identifier><identifier>DOI: 10.1111/j.1440-169X.2011.01303.x</identifier><identifier>PMID: 22070123</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Cell Nucleus - metabolism ; Chromatin - metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; In Situ Hybridization, Fluorescence ; Mice ; Mice, Knockout ; non‐coding RNA ; nuclear speckles ; nuclear structure ; paraspeckles ; Phenotype ; RNA Editing ; RNA Precursors - genetics ; RNA Splicing ; RNA, Long Noncoding - genetics ; RNA, Messenger - metabolism</subject><ispartof>Development, growth & differentiation, 2012-01, Vol.54 (1), p.44-54</ispartof><rights>2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists</rights><rights>2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5193-7df921230e7579e1b97eff80c74ae0397fbc9cf298aabdb622cdb8b40ba834153</citedby><cites>FETCH-LOGICAL-c5193-7df921230e7579e1b97eff80c74ae0397fbc9cf298aabdb622cdb8b40ba834153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1440-169X.2011.01303.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1440-169X.2011.01303.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27913,27914,45563,45564,46398,46822</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22070123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ip, Joanna Y.</creatorcontrib><creatorcontrib>Nakagawa, Shinichi</creatorcontrib><title>Long non‐coding RNAs in nuclear bodies</title><title>Development, growth & differentiation</title><addtitle>Dev Growth Differ</addtitle><description>High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molecularly indistinguishable from other protein‐coding mRNAs. Although the molecular functions of these lncRNAs have long remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, maintenance of subnuclear structures, transport of specific mRNAs, and control of pre‐mRNA splicing. Here, we discuss the functions of a distinct group of vertebrate‐specific lncRNAs, NEAT1/MENε/β/VINC, MALAT1/NEAT2, and Gomafu/RNCR2/MIAT, which accumulate abundantly within the nucleus as RNA components of specific nuclear bodies.</description><subject>Animals</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatin - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>non‐coding RNA</subject><subject>nuclear speckles</subject><subject>nuclear structure</subject><subject>paraspeckles</subject><subject>Phenotype</subject><subject>RNA Editing</subject><subject>RNA Precursors - genetics</subject><subject>RNA Splicing</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Messenger - metabolism</subject><issn>0012-1592</issn><issn>1440-169X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1OwzAQRi0EoqVwBZRlNwnjvzpesKhaKEgVSAgkdpbtOChVmpSYiHbHETgjJ8GhpVvwZuyZN5-lh1CEIcHhXCwSzBjEeCSfEwIYJ4Ap0GR9gPr7wSHqA2ASYy5JD514vwAAxjA5Rj1CQIQZ7aPhvK5eoqquvj4-bZ0V4fFwN_ZRUUVVa0unm8iEtvOn6CjXpXdnuzpAT9dXj5ObeH4_u52M57HlWNJYZLkkIRmc4EI6bKRweZ6CFUw7oFLkxkqbE5lqbTIzIsRmJjUMjE4pw5wO0HCbu2rq19b5N7UsvHVlqStXt15hyjjHRAjyNwqEjTijggY03aK2qb1vXK5WTbHUzSZAqlOqFqozpzpzqlOqfpSqdVg93_3SmqXL9ou_DgNwuQXei9Jt_h2sprNpd6PfYSqDQg</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Ip, Joanna Y.</creator><creator>Nakagawa, Shinichi</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Long non‐coding RNAs in nuclear bodies</title><author>Ip, Joanna Y. ; Nakagawa, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5193-7df921230e7579e1b97eff80c74ae0397fbc9cf298aabdb622cdb8b40ba834153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatin - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>non‐coding RNA</topic><topic>nuclear speckles</topic><topic>nuclear structure</topic><topic>paraspeckles</topic><topic>Phenotype</topic><topic>RNA Editing</topic><topic>RNA Precursors - genetics</topic><topic>RNA Splicing</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Joanna Y.</creatorcontrib><creatorcontrib>Nakagawa, Shinichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Development, growth & differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Joanna Y.</au><au>Nakagawa, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long non‐coding RNAs in nuclear bodies</atitle><jtitle>Development, growth & differentiation</jtitle><addtitle>Dev Growth Differ</addtitle><date>2012-01</date><risdate>2012</risdate><volume>54</volume><issue>1</issue><spage>44</spage><epage>54</epage><pages>44-54</pages><issn>0012-1592</issn><eissn>1440-169X</eissn><abstract>High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molecularly indistinguishable from other protein‐coding mRNAs. Although the molecular functions of these lncRNAs have long remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, maintenance of subnuclear structures, transport of specific mRNAs, and control of pre‐mRNA splicing. Here, we discuss the functions of a distinct group of vertebrate‐specific lncRNAs, NEAT1/MENε/β/VINC, MALAT1/NEAT2, and Gomafu/RNCR2/MIAT, which accumulate abundantly within the nucleus as RNA components of specific nuclear bodies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22070123</pmid><doi>10.1111/j.1440-169X.2011.01303.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1592 |
ispartof | Development, growth & differentiation, 2012-01, Vol.54 (1), p.44-54 |
issn | 0012-1592 1440-169X |
language | eng |
recordid | cdi_proquest_miscellaneous_1345512772 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Open Access Titles of Japan |
subjects | Animals Cell Nucleus - metabolism Chromatin - metabolism Gene Expression Profiling Gene Expression Regulation, Developmental Humans In Situ Hybridization, Fluorescence Mice Mice, Knockout non‐coding RNA nuclear speckles nuclear structure paraspeckles Phenotype RNA Editing RNA Precursors - genetics RNA Splicing RNA, Long Noncoding - genetics RNA, Messenger - metabolism |
title | Long non‐coding RNAs in nuclear bodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20non%E2%80%90coding%20RNAs%20in%20nuclear%20bodies&rft.jtitle=Development,%20growth%20&%20differentiation&rft.au=Ip,%20Joanna%20Y.&rft.date=2012-01&rft.volume=54&rft.issue=1&rft.spage=44&rft.epage=54&rft.pages=44-54&rft.issn=0012-1592&rft.eissn=1440-169X&rft_id=info:doi/10.1111/j.1440-169X.2011.01303.x&rft_dat=%3Cproquest_cross%3E1024654373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024654373&rft_id=info:pmid/22070123&rfr_iscdi=true |