Long non‐coding RNAs in nuclear bodies

High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development, growth & differentiation growth & differentiation, 2012-01, Vol.54 (1), p.44-54
Hauptverfasser: Ip, Joanna Y., Nakagawa, Shinichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 44
container_title Development, growth & differentiation
container_volume 54
creator Ip, Joanna Y.
Nakagawa, Shinichi
description High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molecularly indistinguishable from other protein‐coding mRNAs. Although the molecular functions of these lncRNAs have long remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, maintenance of subnuclear structures, transport of specific mRNAs, and control of pre‐mRNA splicing. Here, we discuss the functions of a distinct group of vertebrate‐specific lncRNAs, NEAT1/MENε/β/VINC, MALAT1/NEAT2, and Gomafu/RNCR2/MIAT, which accumulate abundantly within the nucleus as RNA components of specific nuclear bodies.
doi_str_mv 10.1111/j.1440-169X.2011.01303.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1345512772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024654373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5193-7df921230e7579e1b97eff80c74ae0397fbc9cf298aabdb622cdb8b40ba834153</originalsourceid><addsrcrecordid>eNqNkE1OwzAQRi0EoqVwBZRlNwnjvzpesKhaKEgVSAgkdpbtOChVmpSYiHbHETgjJ8GhpVvwZuyZN5-lh1CEIcHhXCwSzBjEeCSfEwIYJ4Ap0GR9gPr7wSHqA2ASYy5JD514vwAAxjA5Rj1CQIQZ7aPhvK5eoqquvj4-bZ0V4fFwN_ZRUUVVa0unm8iEtvOn6CjXpXdnuzpAT9dXj5ObeH4_u52M57HlWNJYZLkkIRmc4EI6bKRweZ6CFUw7oFLkxkqbE5lqbTIzIsRmJjUMjE4pw5wO0HCbu2rq19b5N7UsvHVlqStXt15hyjjHRAjyNwqEjTijggY03aK2qb1vXK5WTbHUzSZAqlOqFqozpzpzqlOqfpSqdVg93_3SmqXL9ou_DgNwuQXei9Jt_h2sprNpd6PfYSqDQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024654373</pqid></control><display><type>article</type><title>Long non‐coding RNAs in nuclear bodies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Open Access Titles of Japan</source><creator>Ip, Joanna Y. ; Nakagawa, Shinichi</creator><creatorcontrib>Ip, Joanna Y. ; Nakagawa, Shinichi</creatorcontrib><description>High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molecularly indistinguishable from other protein‐coding mRNAs. Although the molecular functions of these lncRNAs have long remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, maintenance of subnuclear structures, transport of specific mRNAs, and control of pre‐mRNA splicing. Here, we discuss the functions of a distinct group of vertebrate‐specific lncRNAs, NEAT1/MENε/β/VINC, MALAT1/NEAT2, and Gomafu/RNCR2/MIAT, which accumulate abundantly within the nucleus as RNA components of specific nuclear bodies.</description><identifier>ISSN: 0012-1592</identifier><identifier>EISSN: 1440-169X</identifier><identifier>DOI: 10.1111/j.1440-169X.2011.01303.x</identifier><identifier>PMID: 22070123</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Cell Nucleus - metabolism ; Chromatin - metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; In Situ Hybridization, Fluorescence ; Mice ; Mice, Knockout ; non‐coding RNA ; nuclear speckles ; nuclear structure ; paraspeckles ; Phenotype ; RNA Editing ; RNA Precursors - genetics ; RNA Splicing ; RNA, Long Noncoding - genetics ; RNA, Messenger - metabolism</subject><ispartof>Development, growth &amp; differentiation, 2012-01, Vol.54 (1), p.44-54</ispartof><rights>2011 The Authors. Development, Growth &amp; Differentiation © 2011 Japanese Society of Developmental Biologists</rights><rights>2011 The Authors. Development, Growth &amp; Differentiation © 2011 Japanese Society of Developmental Biologists.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5193-7df921230e7579e1b97eff80c74ae0397fbc9cf298aabdb622cdb8b40ba834153</citedby><cites>FETCH-LOGICAL-c5193-7df921230e7579e1b97eff80c74ae0397fbc9cf298aabdb622cdb8b40ba834153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1440-169X.2011.01303.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1440-169X.2011.01303.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27913,27914,45563,45564,46398,46822</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22070123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ip, Joanna Y.</creatorcontrib><creatorcontrib>Nakagawa, Shinichi</creatorcontrib><title>Long non‐coding RNAs in nuclear bodies</title><title>Development, growth &amp; differentiation</title><addtitle>Dev Growth Differ</addtitle><description>High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molecularly indistinguishable from other protein‐coding mRNAs. Although the molecular functions of these lncRNAs have long remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, maintenance of subnuclear structures, transport of specific mRNAs, and control of pre‐mRNA splicing. Here, we discuss the functions of a distinct group of vertebrate‐specific lncRNAs, NEAT1/MENε/β/VINC, MALAT1/NEAT2, and Gomafu/RNCR2/MIAT, which accumulate abundantly within the nucleus as RNA components of specific nuclear bodies.</description><subject>Animals</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatin - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>non‐coding RNA</subject><subject>nuclear speckles</subject><subject>nuclear structure</subject><subject>paraspeckles</subject><subject>Phenotype</subject><subject>RNA Editing</subject><subject>RNA Precursors - genetics</subject><subject>RNA Splicing</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Messenger - metabolism</subject><issn>0012-1592</issn><issn>1440-169X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1OwzAQRi0EoqVwBZRlNwnjvzpesKhaKEgVSAgkdpbtOChVmpSYiHbHETgjJ8GhpVvwZuyZN5-lh1CEIcHhXCwSzBjEeCSfEwIYJ4Ap0GR9gPr7wSHqA2ASYy5JD514vwAAxjA5Rj1CQIQZ7aPhvK5eoqquvj4-bZ0V4fFwN_ZRUUVVa0unm8iEtvOn6CjXpXdnuzpAT9dXj5ObeH4_u52M57HlWNJYZLkkIRmc4EI6bKRweZ6CFUw7oFLkxkqbE5lqbTIzIsRmJjUMjE4pw5wO0HCbu2rq19b5N7UsvHVlqStXt15hyjjHRAjyNwqEjTijggY03aK2qb1vXK5WTbHUzSZAqlOqFqozpzpzqlOqfpSqdVg93_3SmqXL9ou_DgNwuQXei9Jt_h2sprNpd6PfYSqDQg</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Ip, Joanna Y.</creator><creator>Nakagawa, Shinichi</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Long non‐coding RNAs in nuclear bodies</title><author>Ip, Joanna Y. ; Nakagawa, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5193-7df921230e7579e1b97eff80c74ae0397fbc9cf298aabdb622cdb8b40ba834153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatin - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>non‐coding RNA</topic><topic>nuclear speckles</topic><topic>nuclear structure</topic><topic>paraspeckles</topic><topic>Phenotype</topic><topic>RNA Editing</topic><topic>RNA Precursors - genetics</topic><topic>RNA Splicing</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Joanna Y.</creatorcontrib><creatorcontrib>Nakagawa, Shinichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Development, growth &amp; differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Joanna Y.</au><au>Nakagawa, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long non‐coding RNAs in nuclear bodies</atitle><jtitle>Development, growth &amp; differentiation</jtitle><addtitle>Dev Growth Differ</addtitle><date>2012-01</date><risdate>2012</risdate><volume>54</volume><issue>1</issue><spage>44</spage><epage>54</epage><pages>44-54</pages><issn>0012-1592</issn><eissn>1440-169X</eissn><abstract>High‐throughput analyses of mammalian transcriptomes have revealed that more than half of the transcripts produced by RNA polymerase II are non‐protein‐coding. One class of these non‐coding transcripts is the long non‐coding RNAs (lncRNAs), which are more than 200 nucleotides in length and are molecularly indistinguishable from other protein‐coding mRNAs. Although the molecular functions of these lncRNAs have long remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, maintenance of subnuclear structures, transport of specific mRNAs, and control of pre‐mRNA splicing. Here, we discuss the functions of a distinct group of vertebrate‐specific lncRNAs, NEAT1/MENε/β/VINC, MALAT1/NEAT2, and Gomafu/RNCR2/MIAT, which accumulate abundantly within the nucleus as RNA components of specific nuclear bodies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22070123</pmid><doi>10.1111/j.1440-169X.2011.01303.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-1592
ispartof Development, growth & differentiation, 2012-01, Vol.54 (1), p.44-54
issn 0012-1592
1440-169X
language eng
recordid cdi_proquest_miscellaneous_1345512772
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Open Access Titles of Japan
subjects Animals
Cell Nucleus - metabolism
Chromatin - metabolism
Gene Expression Profiling
Gene Expression Regulation, Developmental
Humans
In Situ Hybridization, Fluorescence
Mice
Mice, Knockout
non‐coding RNA
nuclear speckles
nuclear structure
paraspeckles
Phenotype
RNA Editing
RNA Precursors - genetics
RNA Splicing
RNA, Long Noncoding - genetics
RNA, Messenger - metabolism
title Long non‐coding RNAs in nuclear bodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20non%E2%80%90coding%20RNAs%20in%20nuclear%20bodies&rft.jtitle=Development,%20growth%20&%20differentiation&rft.au=Ip,%20Joanna%20Y.&rft.date=2012-01&rft.volume=54&rft.issue=1&rft.spage=44&rft.epage=54&rft.pages=44-54&rft.issn=0012-1592&rft.eissn=1440-169X&rft_id=info:doi/10.1111/j.1440-169X.2011.01303.x&rft_dat=%3Cproquest_cross%3E1024654373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024654373&rft_id=info:pmid/22070123&rfr_iscdi=true