Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways
Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring su...
Gespeichert in:
Veröffentlicht in: | Apoptosis (London) 2013-05, Vol.18 (5), p.589-604 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 604 |
---|---|
container_issue | 5 |
container_start_page | 589 |
container_title | Apoptosis (London) |
container_volume | 18 |
creator | Mazumdar, Minakshi Adhikary, Arghya Chakraborty, Samik Mukherjee, Shravanti Manna, Argha Saha, Shilpi Mohanty, Suchismita Dutta, Amrita Bhattacharjee, Pushpak Ray, Pallab Chattopadhyay, Sreya Banerjee, Shuvomoy Chakraborty, Juni Ray, Arun K. Sa, Gaurisankar Das, Tanya |
description | Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy. |
doi_str_mv | 10.1007/s10495-013-0803-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1324959103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937595711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6daf9d17666e3eeda6d6e753355a67272613d4e9b9444643cbe5ee3d4d032ebe3</originalsourceid><addsrcrecordid>eNp1kdFqFDEUhoMotlYfwBsJeOPNuEnOJJnxbinVllYssoJ3IZOc3U6dnUyTDGVfwac2260ighCSQ_L9f5LzE_Kas_ecMb1InNWtrBiHijWsTE_IMZcaKqXl96elBsWqhjfyiLxI6ZYxBg3Uz8mRABAtb9gx-bmycYO5Hzf069mK5kD70c8O6Rb9PAw27mi-2cXQe-rs6DBSh8NA7RSmHFKfPlA7lpHtJox9yr0r-oxxGuyOdpjvEUd6fQGXi-WPXDhPJ2g-L68vF86mySasGjrZfHNvd-kleba2Q8JXj-sJ-fbxbHV6Xl19-XRxuryqHGiRK-XtuvVcK6UQEL1VXqGWAFJapYUWioOvse3auq5VDa5DiVi2PAOBHcIJeXfwnWK4mzFls-3T_ld2xDAnw0GUrracQUHf_oPehjmO5XUPlNCyEaJQ_EC5GFKKuDZT7LeldYYzsw_KHIIyJSizD8qwonnz6Dx3pdV_FL-TKYA4AKkcjRuMf139X9dfx3SeBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324275822</pqid></control><display><type>article</type><title>Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Mazumdar, Minakshi ; Adhikary, Arghya ; Chakraborty, Samik ; Mukherjee, Shravanti ; Manna, Argha ; Saha, Shilpi ; Mohanty, Suchismita ; Dutta, Amrita ; Bhattacharjee, Pushpak ; Ray, Pallab ; Chattopadhyay, Sreya ; Banerjee, Shuvomoy ; Chakraborty, Juni ; Ray, Arun K. ; Sa, Gaurisankar ; Das, Tanya</creator><creatorcontrib>Mazumdar, Minakshi ; Adhikary, Arghya ; Chakraborty, Samik ; Mukherjee, Shravanti ; Manna, Argha ; Saha, Shilpi ; Mohanty, Suchismita ; Dutta, Amrita ; Bhattacharjee, Pushpak ; Ray, Pallab ; Chattopadhyay, Sreya ; Banerjee, Shuvomoy ; Chakraborty, Juni ; Ray, Arun K. ; Sa, Gaurisankar ; Das, Tanya</creatorcontrib><description>Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.</description><identifier>ISSN: 1360-8185</identifier><identifier>EISSN: 1573-675X</identifier><identifier>DOI: 10.1007/s10495-013-0803-0</identifier><identifier>PMID: 23329180</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Antineoplastic Agents, Phytogenic - pharmacology ; Apoptosis ; bcl-Associated Death Protein - genetics ; bcl-Associated Death Protein - metabolism ; Biflavonoids - pharmacology ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Black tea ; Cancer Research ; Carcinoma, Neuroendocrine ; Caspase 8 - genetics ; Caspase 8 - metabolism ; Catechin - pharmacology ; Cell Biology ; Cell Line, Tumor ; Cytochromes c - metabolism ; DNA, Complementary ; Gene Expression Regulation, Neoplastic - drug effects ; Humans ; Membrane Microdomains - drug effects ; Membrane Potential, Mitochondrial - drug effects ; Mitochondria - drug effects ; Mitochondria - metabolism ; Oncogene Protein p21(ras) - genetics ; Oncogene Protein p21(ras) - metabolism ; Oncology ; Original Paper ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Proto-Oncogene Proteins c-ret - genetics ; Proto-Oncogene Proteins c-ret - metabolism ; Signal Transduction - drug effects ; Thyroid ; Thyroid Neoplasms - genetics ; Thyroid Neoplasms - metabolism ; Thyroid Neoplasms - pathology ; Transfection ; Virology</subject><ispartof>Apoptosis (London), 2013-05, Vol.18 (5), p.589-604</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6daf9d17666e3eeda6d6e753355a67272613d4e9b9444643cbe5ee3d4d032ebe3</citedby><cites>FETCH-LOGICAL-c372t-6daf9d17666e3eeda6d6e753355a67272613d4e9b9444643cbe5ee3d4d032ebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10495-013-0803-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10495-013-0803-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23329180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazumdar, Minakshi</creatorcontrib><creatorcontrib>Adhikary, Arghya</creatorcontrib><creatorcontrib>Chakraborty, Samik</creatorcontrib><creatorcontrib>Mukherjee, Shravanti</creatorcontrib><creatorcontrib>Manna, Argha</creatorcontrib><creatorcontrib>Saha, Shilpi</creatorcontrib><creatorcontrib>Mohanty, Suchismita</creatorcontrib><creatorcontrib>Dutta, Amrita</creatorcontrib><creatorcontrib>Bhattacharjee, Pushpak</creatorcontrib><creatorcontrib>Ray, Pallab</creatorcontrib><creatorcontrib>Chattopadhyay, Sreya</creatorcontrib><creatorcontrib>Banerjee, Shuvomoy</creatorcontrib><creatorcontrib>Chakraborty, Juni</creatorcontrib><creatorcontrib>Ray, Arun K.</creatorcontrib><creatorcontrib>Sa, Gaurisankar</creatorcontrib><creatorcontrib>Das, Tanya</creatorcontrib><title>Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways</title><title>Apoptosis (London)</title><addtitle>Apoptosis</addtitle><addtitle>Apoptosis</addtitle><description>Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.</description><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Apoptosis</subject><subject>bcl-Associated Death Protein - genetics</subject><subject>bcl-Associated Death Protein - metabolism</subject><subject>Biflavonoids - pharmacology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Black tea</subject><subject>Cancer Research</subject><subject>Carcinoma, Neuroendocrine</subject><subject>Caspase 8 - genetics</subject><subject>Caspase 8 - metabolism</subject><subject>Catechin - pharmacology</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cytochromes c - metabolism</subject><subject>DNA, Complementary</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Humans</subject><subject>Membrane Microdomains - drug effects</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Oncogene Protein p21(ras) - genetics</subject><subject>Oncogene Protein p21(ras) - metabolism</subject><subject>Oncology</subject><subject>Original Paper</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Proto-Oncogene Proteins c-ret - genetics</subject><subject>Proto-Oncogene Proteins c-ret - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Thyroid</subject><subject>Thyroid Neoplasms - genetics</subject><subject>Thyroid Neoplasms - metabolism</subject><subject>Thyroid Neoplasms - pathology</subject><subject>Transfection</subject><subject>Virology</subject><issn>1360-8185</issn><issn>1573-675X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kdFqFDEUhoMotlYfwBsJeOPNuEnOJJnxbinVllYssoJ3IZOc3U6dnUyTDGVfwac2260ighCSQ_L9f5LzE_Kas_ecMb1InNWtrBiHijWsTE_IMZcaKqXl96elBsWqhjfyiLxI6ZYxBg3Uz8mRABAtb9gx-bmycYO5Hzf069mK5kD70c8O6Rb9PAw27mi-2cXQe-rs6DBSh8NA7RSmHFKfPlA7lpHtJox9yr0r-oxxGuyOdpjvEUd6fQGXi-WPXDhPJ2g-L68vF86mySasGjrZfHNvd-kleba2Q8JXj-sJ-fbxbHV6Xl19-XRxuryqHGiRK-XtuvVcK6UQEL1VXqGWAFJapYUWioOvse3auq5VDa5DiVi2PAOBHcIJeXfwnWK4mzFls-3T_ld2xDAnw0GUrracQUHf_oPehjmO5XUPlNCyEaJQ_EC5GFKKuDZT7LeldYYzsw_KHIIyJSizD8qwonnz6Dx3pdV_FL-TKYA4AKkcjRuMf139X9dfx3SeBQ</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Mazumdar, Minakshi</creator><creator>Adhikary, Arghya</creator><creator>Chakraborty, Samik</creator><creator>Mukherjee, Shravanti</creator><creator>Manna, Argha</creator><creator>Saha, Shilpi</creator><creator>Mohanty, Suchismita</creator><creator>Dutta, Amrita</creator><creator>Bhattacharjee, Pushpak</creator><creator>Ray, Pallab</creator><creator>Chattopadhyay, Sreya</creator><creator>Banerjee, Shuvomoy</creator><creator>Chakraborty, Juni</creator><creator>Ray, Arun K.</creator><creator>Sa, Gaurisankar</creator><creator>Das, Tanya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RQ</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>U9A</scope><scope>7X8</scope></search><sort><creationdate>20130501</creationdate><title>Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways</title><author>Mazumdar, Minakshi ; Adhikary, Arghya ; Chakraborty, Samik ; Mukherjee, Shravanti ; Manna, Argha ; Saha, Shilpi ; Mohanty, Suchismita ; Dutta, Amrita ; Bhattacharjee, Pushpak ; Ray, Pallab ; Chattopadhyay, Sreya ; Banerjee, Shuvomoy ; Chakraborty, Juni ; Ray, Arun K. ; Sa, Gaurisankar ; Das, Tanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6daf9d17666e3eeda6d6e753355a67272613d4e9b9444643cbe5ee3d4d032ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Apoptosis</topic><topic>bcl-Associated Death Protein - genetics</topic><topic>bcl-Associated Death Protein - metabolism</topic><topic>Biflavonoids - pharmacology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Black tea</topic><topic>Cancer Research</topic><topic>Carcinoma, Neuroendocrine</topic><topic>Caspase 8 - genetics</topic><topic>Caspase 8 - metabolism</topic><topic>Catechin - pharmacology</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cytochromes c - metabolism</topic><topic>DNA, Complementary</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Humans</topic><topic>Membrane Microdomains - drug effects</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Oncogene Protein p21(ras) - genetics</topic><topic>Oncogene Protein p21(ras) - metabolism</topic><topic>Oncology</topic><topic>Original Paper</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Proto-Oncogene Proteins c-ret - genetics</topic><topic>Proto-Oncogene Proteins c-ret - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Thyroid</topic><topic>Thyroid Neoplasms - genetics</topic><topic>Thyroid Neoplasms - metabolism</topic><topic>Thyroid Neoplasms - pathology</topic><topic>Transfection</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazumdar, Minakshi</creatorcontrib><creatorcontrib>Adhikary, Arghya</creatorcontrib><creatorcontrib>Chakraborty, Samik</creatorcontrib><creatorcontrib>Mukherjee, Shravanti</creatorcontrib><creatorcontrib>Manna, Argha</creatorcontrib><creatorcontrib>Saha, Shilpi</creatorcontrib><creatorcontrib>Mohanty, Suchismita</creatorcontrib><creatorcontrib>Dutta, Amrita</creatorcontrib><creatorcontrib>Bhattacharjee, Pushpak</creatorcontrib><creatorcontrib>Ray, Pallab</creatorcontrib><creatorcontrib>Chattopadhyay, Sreya</creatorcontrib><creatorcontrib>Banerjee, Shuvomoy</creatorcontrib><creatorcontrib>Chakraborty, Juni</creatorcontrib><creatorcontrib>Ray, Arun K.</creatorcontrib><creatorcontrib>Sa, Gaurisankar</creatorcontrib><creatorcontrib>Das, Tanya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Apoptosis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazumdar, Minakshi</au><au>Adhikary, Arghya</au><au>Chakraborty, Samik</au><au>Mukherjee, Shravanti</au><au>Manna, Argha</au><au>Saha, Shilpi</au><au>Mohanty, Suchismita</au><au>Dutta, Amrita</au><au>Bhattacharjee, Pushpak</au><au>Ray, Pallab</au><au>Chattopadhyay, Sreya</au><au>Banerjee, Shuvomoy</au><au>Chakraborty, Juni</au><au>Ray, Arun K.</au><au>Sa, Gaurisankar</au><au>Das, Tanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways</atitle><jtitle>Apoptosis (London)</jtitle><stitle>Apoptosis</stitle><addtitle>Apoptosis</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>18</volume><issue>5</issue><spage>589</spage><epage>604</epage><pages>589-604</pages><issn>1360-8185</issn><eissn>1573-675X</eissn><abstract>Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23329180</pmid><doi>10.1007/s10495-013-0803-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1360-8185 |
ispartof | Apoptosis (London), 2013-05, Vol.18 (5), p.589-604 |
issn | 1360-8185 1573-675X |
language | eng |
recordid | cdi_proquest_miscellaneous_1324959103 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Antineoplastic Agents, Phytogenic - pharmacology Apoptosis bcl-Associated Death Protein - genetics bcl-Associated Death Protein - metabolism Biflavonoids - pharmacology Biochemistry Biomedical and Life Sciences Biomedicine Black tea Cancer Research Carcinoma, Neuroendocrine Caspase 8 - genetics Caspase 8 - metabolism Catechin - pharmacology Cell Biology Cell Line, Tumor Cytochromes c - metabolism DNA, Complementary Gene Expression Regulation, Neoplastic - drug effects Humans Membrane Microdomains - drug effects Membrane Potential, Mitochondrial - drug effects Mitochondria - drug effects Mitochondria - metabolism Oncogene Protein p21(ras) - genetics Oncogene Protein p21(ras) - metabolism Oncology Original Paper p38 Mitogen-Activated Protein Kinases - genetics p38 Mitogen-Activated Protein Kinases - metabolism Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Proto-Oncogene Proteins c-ret - genetics Proto-Oncogene Proteins c-ret - metabolism Signal Transduction - drug effects Thyroid Thyroid Neoplasms - genetics Thyroid Neoplasms - metabolism Thyroid Neoplasms - pathology Transfection Virology |
title | Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20RET%20to%20induce%20medullary%20thyroid%20cancer%20cell%20apoptosis:%20an%20antagonistic%20interplay%20between%20PI3K/Akt%20and%20p38MAPK/caspase-8%20pathways&rft.jtitle=Apoptosis%20(London)&rft.au=Mazumdar,%20Minakshi&rft.date=2013-05-01&rft.volume=18&rft.issue=5&rft.spage=589&rft.epage=604&rft.pages=589-604&rft.issn=1360-8185&rft.eissn=1573-675X&rft_id=info:doi/10.1007/s10495-013-0803-0&rft_dat=%3Cproquest_cross%3E2937595711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324275822&rft_id=info:pmid/23329180&rfr_iscdi=true |