Thermal conductivity of short sequences of rock

Numerical models of igneous rock samples provide estimates of the variation in conductivity of discs cut from lengths of core. Ten discs cut from a piece of core have a root mean squared deviation of up to 6 %, depending on quartz content and crystal size. Greater crystal size increases the apparent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of earth sciences : Geologische Rundschau 2013-03, Vol.102 (2), p.483-491
1. Verfasser: Jessop, Alan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 2
container_start_page 483
container_title International journal of earth sciences : Geologische Rundschau
container_volume 102
creator Jessop, Alan M.
description Numerical models of igneous rock samples provide estimates of the variation in conductivity of discs cut from lengths of core. Ten discs cut from a piece of core have a root mean squared deviation of up to 6 %, depending on quartz content and crystal size. Greater crystal size increases the apparent conductivity of a disc by up to 3.2 % when quartz content is 49 %, but less when quartz content is 30 % or less. Measured conductivity depends on the thickness of the measured disc. When quartz content is low, this difference is well within the normal limits of experimental error, but when quartz content is high, the apparent conductivity will be within the normal limits of experimental error only when the disc is at least 8 mm thick. The estimation of contact resistance between the sample and the bar by using sets of discs of different thickness is unreliable because of variation in mineral content between contiguous discs. Better representation of the conductivity profile is obtained by measuring single discs with an estimation of the contact resistance.
doi_str_mv 10.1007/s00531-012-0820-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323820047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891081521</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-71e5951fb7cb71927983e95e43958f77e0ac5dee4a95e733e8c391eeccf4140f3</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLgWv0B3gpevMTNS1LTHmXxCxa8rOeQzb64XdtmTVph_70pFRHB03sM8-bNDCGXwG6AMTWPjBUCKANOWckZhSMyAykUFfyWH__shTwlZzHuGBsBmJH5aouhNU1ufbcZbF9_1v0h9y6PWx_6POLHgJ3FOELB2_dzcuJME_Hie2bk9eF-tXiiy5fH58XdkhqheE8VYFEV4NbKrhVUXFWlwKpAKaqidEohM7bYIEqTQCUEllZUgGitkyCZExm5nnT3wScLsddtHS02jenQD1GD4CLlZFIl6tUf6s4PoUvuNPBSJT1IYTMCE8sGH2NAp_ehbk04aGB6rFBPFepUoR4rTC8ywqebmLjdG4Zfyv8efQEA2XHF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287414114</pqid></control><display><type>article</type><title>Thermal conductivity of short sequences of rock</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jessop, Alan M.</creator><creatorcontrib>Jessop, Alan M.</creatorcontrib><description>Numerical models of igneous rock samples provide estimates of the variation in conductivity of discs cut from lengths of core. Ten discs cut from a piece of core have a root mean squared deviation of up to 6 %, depending on quartz content and crystal size. Greater crystal size increases the apparent conductivity of a disc by up to 3.2 % when quartz content is 49 %, but less when quartz content is 30 % or less. Measured conductivity depends on the thickness of the measured disc. When quartz content is low, this difference is well within the normal limits of experimental error, but when quartz content is high, the apparent conductivity will be within the normal limits of experimental error only when the disc is at least 8 mm thick. The estimation of contact resistance between the sample and the bar by using sets of discs of different thickness is unreliable because of variation in mineral content between contiguous discs. Better representation of the conductivity profile is obtained by measuring single discs with an estimation of the contact resistance.</description><identifier>ISSN: 1437-3254</identifier><identifier>EISSN: 1437-3262</identifier><identifier>DOI: 10.1007/s00531-012-0820-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Contact resistance ; Crystals ; Deviation ; Discs ; Disks ; Earth and Environmental Science ; Earth Sciences ; Errors ; Geochemistry ; Geology ; Geophysics/Geodesy ; Heat conductivity ; Igneous rocks ; Mathematical models ; Mineral Resources ; Minerals ; Original Paper ; Quartz ; Representations ; Sedimentology ; Structural Geology ; Thermal conductivity</subject><ispartof>International journal of earth sciences : Geologische Rundschau, 2013-03, Vol.102 (2), p.483-491</ispartof><rights>Her Majesty the Queen in Right of Canada 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-71e5951fb7cb71927983e95e43958f77e0ac5dee4a95e733e8c391eeccf4140f3</citedby><cites>FETCH-LOGICAL-a372t-71e5951fb7cb71927983e95e43958f77e0ac5dee4a95e733e8c391eeccf4140f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00531-012-0820-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00531-012-0820-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Jessop, Alan M.</creatorcontrib><title>Thermal conductivity of short sequences of rock</title><title>International journal of earth sciences : Geologische Rundschau</title><addtitle>Int J Earth Sci (Geol Rundsch)</addtitle><description>Numerical models of igneous rock samples provide estimates of the variation in conductivity of discs cut from lengths of core. Ten discs cut from a piece of core have a root mean squared deviation of up to 6 %, depending on quartz content and crystal size. Greater crystal size increases the apparent conductivity of a disc by up to 3.2 % when quartz content is 49 %, but less when quartz content is 30 % or less. Measured conductivity depends on the thickness of the measured disc. When quartz content is low, this difference is well within the normal limits of experimental error, but when quartz content is high, the apparent conductivity will be within the normal limits of experimental error only when the disc is at least 8 mm thick. The estimation of contact resistance between the sample and the bar by using sets of discs of different thickness is unreliable because of variation in mineral content between contiguous discs. Better representation of the conductivity profile is obtained by measuring single discs with an estimation of the contact resistance.</description><subject>Contact resistance</subject><subject>Crystals</subject><subject>Deviation</subject><subject>Discs</subject><subject>Disks</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Errors</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Heat conductivity</subject><subject>Igneous rocks</subject><subject>Mathematical models</subject><subject>Mineral Resources</subject><subject>Minerals</subject><subject>Original Paper</subject><subject>Quartz</subject><subject>Representations</subject><subject>Sedimentology</subject><subject>Structural Geology</subject><subject>Thermal conductivity</subject><issn>1437-3254</issn><issn>1437-3262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1LxDAUDKLgWv0B3gpevMTNS1LTHmXxCxa8rOeQzb64XdtmTVph_70pFRHB03sM8-bNDCGXwG6AMTWPjBUCKANOWckZhSMyAykUFfyWH__shTwlZzHuGBsBmJH5aouhNU1ufbcZbF9_1v0h9y6PWx_6POLHgJ3FOELB2_dzcuJME_Hie2bk9eF-tXiiy5fH58XdkhqheE8VYFEV4NbKrhVUXFWlwKpAKaqidEohM7bYIEqTQCUEllZUgGitkyCZExm5nnT3wScLsddtHS02jenQD1GD4CLlZFIl6tUf6s4PoUvuNPBSJT1IYTMCE8sGH2NAp_ehbk04aGB6rFBPFepUoR4rTC8ywqebmLjdG4Zfyv8efQEA2XHF</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Jessop, Alan M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Thermal conductivity of short sequences of rock</title><author>Jessop, Alan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-71e5951fb7cb71927983e95e43958f77e0ac5dee4a95e733e8c391eeccf4140f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Contact resistance</topic><topic>Crystals</topic><topic>Deviation</topic><topic>Discs</topic><topic>Disks</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Errors</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Heat conductivity</topic><topic>Igneous rocks</topic><topic>Mathematical models</topic><topic>Mineral Resources</topic><topic>Minerals</topic><topic>Original Paper</topic><topic>Quartz</topic><topic>Representations</topic><topic>Sedimentology</topic><topic>Structural Geology</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jessop, Alan M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jessop, Alan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of short sequences of rock</atitle><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle><stitle>Int J Earth Sci (Geol Rundsch)</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>102</volume><issue>2</issue><spage>483</spage><epage>491</epage><pages>483-491</pages><issn>1437-3254</issn><eissn>1437-3262</eissn><abstract>Numerical models of igneous rock samples provide estimates of the variation in conductivity of discs cut from lengths of core. Ten discs cut from a piece of core have a root mean squared deviation of up to 6 %, depending on quartz content and crystal size. Greater crystal size increases the apparent conductivity of a disc by up to 3.2 % when quartz content is 49 %, but less when quartz content is 30 % or less. Measured conductivity depends on the thickness of the measured disc. When quartz content is low, this difference is well within the normal limits of experimental error, but when quartz content is high, the apparent conductivity will be within the normal limits of experimental error only when the disc is at least 8 mm thick. The estimation of contact resistance between the sample and the bar by using sets of discs of different thickness is unreliable because of variation in mineral content between contiguous discs. Better representation of the conductivity profile is obtained by measuring single discs with an estimation of the contact resistance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00531-012-0820-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1437-3254
ispartof International journal of earth sciences : Geologische Rundschau, 2013-03, Vol.102 (2), p.483-491
issn 1437-3254
1437-3262
language eng
recordid cdi_proquest_miscellaneous_1323820047
source SpringerLink Journals - AutoHoldings
subjects Contact resistance
Crystals
Deviation
Discs
Disks
Earth and Environmental Science
Earth Sciences
Errors
Geochemistry
Geology
Geophysics/Geodesy
Heat conductivity
Igneous rocks
Mathematical models
Mineral Resources
Minerals
Original Paper
Quartz
Representations
Sedimentology
Structural Geology
Thermal conductivity
title Thermal conductivity of short sequences of rock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20short%20sequences%20of%20rock&rft.jtitle=International%20journal%20of%20earth%20sciences%20:%20Geologische%20Rundschau&rft.au=Jessop,%20Alan%20M.&rft.date=2013-03-01&rft.volume=102&rft.issue=2&rft.spage=483&rft.epage=491&rft.pages=483-491&rft.issn=1437-3254&rft.eissn=1437-3262&rft_id=info:doi/10.1007/s00531-012-0820-1&rft_dat=%3Cproquest_cross%3E2891081521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1287414114&rft_id=info:pmid/&rfr_iscdi=true