2D–1D Wavelet Reconstruction as a Tool for Source Finding in Spectroscopic Imaging Surveys

Today, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of Australia 2012-01, Vol.29 (3), p.244-250
Hauptverfasser: Flöer, L., Winkel, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 244
container_title Publications of the Astronomical Society of Australia
container_volume 29
creator Flöer, L.
Winkel, B.
description Today, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In this paper we will review the basic method of denoising data by thresholding wavelet coefficients and implement a 2D–1D wavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes. We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding pipeline.
doi_str_mv 10.1071/AS11042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323816673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1071_AS11042</cupid><sourcerecordid>1323816673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-7c7ab33f733f6d07714b02bf91206769175704abb0d0643507f694a93c8b4a003</originalsourceid><addsrcrecordid>eNplkM9Kw0AQxhdRsFbxFfamHqKzf7KbHEtrtVAQTMWLEDabTdmSZOtuUujNd_ANfRJT7M3DMAPzY-b7PoSuCdwTkORhkhECnJ6gEeE8iQQk7HSYGWURixM4RxchbAAIF5SO0Aed_Xx9kxl-VztTmw6_Gu3a0Pled9a1WAWs8Mq5GlfO48z1Xhs8t21p2zW2Lc62RnfeBe22VuNFo9aHRdb7ndmHS3RWqTqYq2Mfo7f542r6HC1fnhbTyTLSNI67SGqpCsYqOZQoQUrCC6BFlRIKQoqUyFgCV0UBJQjOYpCVSLlKmU4KrgDYGN3-3d1699mb0OWNDdrUtWqN60N-MJ8QIYYHY3Tzh-pBdPCmyrfeNsrvcwL5Ib_8mN9A3h1J1RTelmuTbwb77WDkH_sLREJuXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323816673</pqid></control><display><type>article</type><title>2D–1D Wavelet Reconstruction as a Tool for Source Finding in Spectroscopic Imaging Surveys</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>Flöer, L. ; Winkel, B.</creator><creatorcontrib>Flöer, L. ; Winkel, B.</creatorcontrib><description>Today, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In this paper we will review the basic method of denoising data by thresholding wavelet coefficients and implement a 2D–1D wavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes. We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding pipeline.</description><identifier>ISSN: 1323-3580</identifier><identifier>EISSN: 1448-6083</identifier><identifier>EISSN: 1323-3580</identifier><identifier>DOI: 10.1071/AS11042</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Numerical simulations</subject><ispartof>Publications of the Astronomical Society of Australia, 2012-01, Vol.29 (3), p.244-250</ispartof><rights>Copyright © Astronomical Society of Australia 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-7c7ab33f733f6d07714b02bf91206769175704abb0d0643507f694a93c8b4a003</citedby><cites>FETCH-LOGICAL-c255t-7c7ab33f733f6d07714b02bf91206769175704abb0d0643507f694a93c8b4a003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1323358000001260/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Flöer, L.</creatorcontrib><creatorcontrib>Winkel, B.</creatorcontrib><title>2D–1D Wavelet Reconstruction as a Tool for Source Finding in Spectroscopic Imaging Surveys</title><title>Publications of the Astronomical Society of Australia</title><addtitle>Publ. – Astron. Soc. Aust</addtitle><description>Today, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In this paper we will review the basic method of denoising data by thresholding wavelet coefficients and implement a 2D–1D wavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes. We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding pipeline.</description><subject>Algorithms</subject><subject>Numerical simulations</subject><issn>1323-3580</issn><issn>1448-6083</issn><issn>1323-3580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNplkM9Kw0AQxhdRsFbxFfamHqKzf7KbHEtrtVAQTMWLEDabTdmSZOtuUujNd_ANfRJT7M3DMAPzY-b7PoSuCdwTkORhkhECnJ6gEeE8iQQk7HSYGWURixM4RxchbAAIF5SO0Aed_Xx9kxl-VztTmw6_Gu3a0Pled9a1WAWs8Mq5GlfO48z1Xhs8t21p2zW2Lc62RnfeBe22VuNFo9aHRdb7ndmHS3RWqTqYq2Mfo7f542r6HC1fnhbTyTLSNI67SGqpCsYqOZQoQUrCC6BFlRIKQoqUyFgCV0UBJQjOYpCVSLlKmU4KrgDYGN3-3d1699mb0OWNDdrUtWqN60N-MJ8QIYYHY3Tzh-pBdPCmyrfeNsrvcwL5Ib_8mN9A3h1J1RTelmuTbwb77WDkH_sLREJuXw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Flöer, L.</creator><creator>Winkel, B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120101</creationdate><title>2D–1D Wavelet Reconstruction as a Tool for Source Finding in Spectroscopic Imaging Surveys</title><author>Flöer, L. ; Winkel, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-7c7ab33f733f6d07714b02bf91206769175704abb0d0643507f694a93c8b4a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Numerical simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flöer, L.</creatorcontrib><creatorcontrib>Winkel, B.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Publications of the Astronomical Society of Australia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flöer, L.</au><au>Winkel, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D–1D Wavelet Reconstruction as a Tool for Source Finding in Spectroscopic Imaging Surveys</atitle><jtitle>Publications of the Astronomical Society of Australia</jtitle><addtitle>Publ. – Astron. Soc. Aust</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>29</volume><issue>3</issue><spage>244</spage><epage>250</epage><pages>244-250</pages><issn>1323-3580</issn><eissn>1448-6083</eissn><eissn>1323-3580</eissn><abstract>Today, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In this paper we will review the basic method of denoising data by thresholding wavelet coefficients and implement a 2D–1D wavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes. We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding pipeline.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1071/AS11042</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1323-3580
ispartof Publications of the Astronomical Society of Australia, 2012-01, Vol.29 (3), p.244-250
issn 1323-3580
1448-6083
1323-3580
language eng
recordid cdi_proquest_miscellaneous_1323816673
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete
subjects Algorithms
Numerical simulations
title 2D–1D Wavelet Reconstruction as a Tool for Source Finding in Spectroscopic Imaging Surveys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%E2%80%931D%20Wavelet%20Reconstruction%20as%20a%20Tool%20for%20Source%20Finding%20in%20Spectroscopic%20Imaging%20Surveys&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20Australia&rft.au=Fl%C3%B6er,%20L.&rft.date=2012-01-01&rft.volume=29&rft.issue=3&rft.spage=244&rft.epage=250&rft.pages=244-250&rft.issn=1323-3580&rft.eissn=1448-6083&rft_id=info:doi/10.1071/AS11042&rft_dat=%3Cproquest_cross%3E1323816673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323816673&rft_id=info:pmid/&rft_cupid=10_1071_AS11042&rfr_iscdi=true