Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality

F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2013-04, Vol.22 (7), p.1328-1347
Hauptverfasser: Ackermann, Bastian, Kröber, Sandra, Torres-Benito, Laura, Borgmann, Anke, Peters, Miriam, Hosseini Barkooie, Seyyed Mohsen, Tejero, Rocio, Jakubik, Miriam, Schreml, Julia, Milbradt, Janine, Wunderlich, Thomas F, Riessland, Markus, Tabares, Lucia, Wirth, Brunhilde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1347
container_issue 7
container_start_page 1328
container_title Human molecular genetics
container_volume 22
creator Ackermann, Bastian
Kröber, Sandra
Torres-Benito, Laura
Borgmann, Anke
Peters, Miriam
Hosseini Barkooie, Seyyed Mohsen
Tejero, Rocio
Jakubik, Miriam
Schreml, Julia
Milbradt, Janine
Wunderlich, Thomas F
Riessland, Markus
Tabares, Lucia
Wirth, Brunhilde
description F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.
doi_str_mv 10.1093/hmg/dds540
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323811891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323811891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-1898d0f9f5ad1683aaf864c7d3ee223b6ab0936e4d8d7d6a77e078b89e32e15c3</originalsourceid><addsrcrecordid>eNqNkc1OwzAQhC0EoqVw4QGQjwgp1I5Txzmiij-pEhzgHG3jTevKcYKdVO3bY9TCmdPu4ZvZ0Q4h15zdc1aI6bpZTbUOs4ydkDHPJEtSpsQpGbNCZoksmByRixA2jHGZifycjFKRSqEkH5Pdu4XQG0cFhQataT30GGjojANLmyFUgwVPofdtt97TrQGq0cIeNYVd62jnB2fcioLT1DSdb7dR7XDw7Z92M7iqN5GtjwtY0-8vyVkNNuDVcU7I59Pjx_wlWbw9v84fFkkVA_YJV4XSrC7qGWgulQColcyqXAvENBVLCcv4AomZVjrXEvIcWa6WqkCRIp9VYkJuD74x29eAoS8bEyq0Fhy2Qyi5SIXi8Qz_B8pzJeLLWUTvDmjl2xA81mXnTQN-X3JW_pRSxlLKQykRvjn6DssG9R_624L4BiuDi6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317831090</pqid></control><display><type>article</type><title>Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ackermann, Bastian ; Kröber, Sandra ; Torres-Benito, Laura ; Borgmann, Anke ; Peters, Miriam ; Hosseini Barkooie, Seyyed Mohsen ; Tejero, Rocio ; Jakubik, Miriam ; Schreml, Julia ; Milbradt, Janine ; Wunderlich, Thomas F ; Riessland, Markus ; Tabares, Lucia ; Wirth, Brunhilde</creator><creatorcontrib>Ackermann, Bastian ; Kröber, Sandra ; Torres-Benito, Laura ; Borgmann, Anke ; Peters, Miriam ; Hosseini Barkooie, Seyyed Mohsen ; Tejero, Rocio ; Jakubik, Miriam ; Schreml, Julia ; Milbradt, Janine ; Wunderlich, Thomas F ; Riessland, Markus ; Tabares, Lucia ; Wirth, Brunhilde</creatorcontrib><description>F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/dds540</identifier><identifier>PMID: 23263861</identifier><language>eng</language><publisher>England</publisher><subject>Actins - metabolism ; Animals ; Evoked Potentials, Motor ; Gene Expression ; Humans ; Membrane Glycoproteins - physiology ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Microfilament Proteins - physiology ; Microscopy, Fluorescence ; Motor Endplate - metabolism ; Motor Endplate - pathology ; Motor Endplate - physiopathology ; Motor Neurons - metabolism ; Motor Neurons - pathology ; Muscular Atrophy, Spinal - metabolism ; Muscular Atrophy, Spinal - pathology ; Muscular Atrophy, Spinal - physiopathology ; Phenotype ; Proprioception ; Protein Transport ; Receptors, Cholinergic - metabolism ; Survival of Motor Neuron 1 Protein - metabolism ; Synapses - metabolism ; Synaptic Vesicles - metabolism</subject><ispartof>Human molecular genetics, 2013-04, Vol.22 (7), p.1328-1347</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-1898d0f9f5ad1683aaf864c7d3ee223b6ab0936e4d8d7d6a77e078b89e32e15c3</citedby><cites>FETCH-LOGICAL-c386t-1898d0f9f5ad1683aaf864c7d3ee223b6ab0936e4d8d7d6a77e078b89e32e15c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23263861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ackermann, Bastian</creatorcontrib><creatorcontrib>Kröber, Sandra</creatorcontrib><creatorcontrib>Torres-Benito, Laura</creatorcontrib><creatorcontrib>Borgmann, Anke</creatorcontrib><creatorcontrib>Peters, Miriam</creatorcontrib><creatorcontrib>Hosseini Barkooie, Seyyed Mohsen</creatorcontrib><creatorcontrib>Tejero, Rocio</creatorcontrib><creatorcontrib>Jakubik, Miriam</creatorcontrib><creatorcontrib>Schreml, Julia</creatorcontrib><creatorcontrib>Milbradt, Janine</creatorcontrib><creatorcontrib>Wunderlich, Thomas F</creatorcontrib><creatorcontrib>Riessland, Markus</creatorcontrib><creatorcontrib>Tabares, Lucia</creatorcontrib><creatorcontrib>Wirth, Brunhilde</creatorcontrib><title>Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.</description><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Evoked Potentials, Motor</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Membrane Glycoproteins - physiology</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microfilament Proteins - physiology</subject><subject>Microscopy, Fluorescence</subject><subject>Motor Endplate - metabolism</subject><subject>Motor Endplate - pathology</subject><subject>Motor Endplate - physiopathology</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - pathology</subject><subject>Muscular Atrophy, Spinal - metabolism</subject><subject>Muscular Atrophy, Spinal - pathology</subject><subject>Muscular Atrophy, Spinal - physiopathology</subject><subject>Phenotype</subject><subject>Proprioception</subject><subject>Protein Transport</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>Survival of Motor Neuron 1 Protein - metabolism</subject><subject>Synapses - metabolism</subject><subject>Synaptic Vesicles - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1OwzAQhC0EoqVw4QGQjwgp1I5Txzmiij-pEhzgHG3jTevKcYKdVO3bY9TCmdPu4ZvZ0Q4h15zdc1aI6bpZTbUOs4ydkDHPJEtSpsQpGbNCZoksmByRixA2jHGZifycjFKRSqEkH5Pdu4XQG0cFhQataT30GGjojANLmyFUgwVPofdtt97TrQGq0cIeNYVd62jnB2fcioLT1DSdb7dR7XDw7Z92M7iqN5GtjwtY0-8vyVkNNuDVcU7I59Pjx_wlWbw9v84fFkkVA_YJV4XSrC7qGWgulQColcyqXAvENBVLCcv4AomZVjrXEvIcWa6WqkCRIp9VYkJuD74x29eAoS8bEyq0Fhy2Qyi5SIXi8Qz_B8pzJeLLWUTvDmjl2xA81mXnTQN-X3JW_pRSxlLKQykRvjn6DssG9R_624L4BiuDi6I</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Ackermann, Bastian</creator><creator>Kröber, Sandra</creator><creator>Torres-Benito, Laura</creator><creator>Borgmann, Anke</creator><creator>Peters, Miriam</creator><creator>Hosseini Barkooie, Seyyed Mohsen</creator><creator>Tejero, Rocio</creator><creator>Jakubik, Miriam</creator><creator>Schreml, Julia</creator><creator>Milbradt, Janine</creator><creator>Wunderlich, Thomas F</creator><creator>Riessland, Markus</creator><creator>Tabares, Lucia</creator><creator>Wirth, Brunhilde</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130401</creationdate><title>Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality</title><author>Ackermann, Bastian ; Kröber, Sandra ; Torres-Benito, Laura ; Borgmann, Anke ; Peters, Miriam ; Hosseini Barkooie, Seyyed Mohsen ; Tejero, Rocio ; Jakubik, Miriam ; Schreml, Julia ; Milbradt, Janine ; Wunderlich, Thomas F ; Riessland, Markus ; Tabares, Lucia ; Wirth, Brunhilde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-1898d0f9f5ad1683aaf864c7d3ee223b6ab0936e4d8d7d6a77e078b89e32e15c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Evoked Potentials, Motor</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Membrane Glycoproteins - physiology</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microfilament Proteins - physiology</topic><topic>Microscopy, Fluorescence</topic><topic>Motor Endplate - metabolism</topic><topic>Motor Endplate - pathology</topic><topic>Motor Endplate - physiopathology</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - pathology</topic><topic>Muscular Atrophy, Spinal - metabolism</topic><topic>Muscular Atrophy, Spinal - pathology</topic><topic>Muscular Atrophy, Spinal - physiopathology</topic><topic>Phenotype</topic><topic>Proprioception</topic><topic>Protein Transport</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>Survival of Motor Neuron 1 Protein - metabolism</topic><topic>Synapses - metabolism</topic><topic>Synaptic Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackermann, Bastian</creatorcontrib><creatorcontrib>Kröber, Sandra</creatorcontrib><creatorcontrib>Torres-Benito, Laura</creatorcontrib><creatorcontrib>Borgmann, Anke</creatorcontrib><creatorcontrib>Peters, Miriam</creatorcontrib><creatorcontrib>Hosseini Barkooie, Seyyed Mohsen</creatorcontrib><creatorcontrib>Tejero, Rocio</creatorcontrib><creatorcontrib>Jakubik, Miriam</creatorcontrib><creatorcontrib>Schreml, Julia</creatorcontrib><creatorcontrib>Milbradt, Janine</creatorcontrib><creatorcontrib>Wunderlich, Thomas F</creatorcontrib><creatorcontrib>Riessland, Markus</creatorcontrib><creatorcontrib>Tabares, Lucia</creatorcontrib><creatorcontrib>Wirth, Brunhilde</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackermann, Bastian</au><au>Kröber, Sandra</au><au>Torres-Benito, Laura</au><au>Borgmann, Anke</au><au>Peters, Miriam</au><au>Hosseini Barkooie, Seyyed Mohsen</au><au>Tejero, Rocio</au><au>Jakubik, Miriam</au><au>Schreml, Julia</au><au>Milbradt, Janine</au><au>Wunderlich, Thomas F</au><au>Riessland, Markus</au><au>Tabares, Lucia</au><au>Wirth, Brunhilde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>22</volume><issue>7</issue><spage>1328</spage><epage>1347</epage><pages>1328-1347</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.</abstract><cop>England</cop><pmid>23263861</pmid><doi>10.1093/hmg/dds540</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2013-04, Vol.22 (7), p.1328-1347
issn 0964-6906
1460-2083
language eng
recordid cdi_proquest_miscellaneous_1323811891
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Actins - metabolism
Animals
Evoked Potentials, Motor
Gene Expression
Humans
Membrane Glycoproteins - physiology
Mice
Mice, 129 Strain
Mice, Inbred C57BL
Mice, Transgenic
Microfilament Proteins - physiology
Microscopy, Fluorescence
Motor Endplate - metabolism
Motor Endplate - pathology
Motor Endplate - physiopathology
Motor Neurons - metabolism
Motor Neurons - pathology
Muscular Atrophy, Spinal - metabolism
Muscular Atrophy, Spinal - pathology
Muscular Atrophy, Spinal - physiopathology
Phenotype
Proprioception
Protein Transport
Receptors, Cholinergic - metabolism
Survival of Motor Neuron 1 Protein - metabolism
Synapses - metabolism
Synaptic Vesicles - metabolism
title Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastin%203%20ameliorates%20spinal%20muscular%20atrophy%20via%20delayed%20axon%20pruning%20and%20improves%20neuromuscular%20junction%20functionality&rft.jtitle=Human%20molecular%20genetics&rft.au=Ackermann,%20Bastian&rft.date=2013-04-01&rft.volume=22&rft.issue=7&rft.spage=1328&rft.epage=1347&rft.pages=1328-1347&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/dds540&rft_dat=%3Cproquest_cross%3E1323811891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317831090&rft_id=info:pmid/23263861&rfr_iscdi=true