Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality
F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the ex...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2013-04, Vol.22 (7), p.1328-1347 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1347 |
---|---|
container_issue | 7 |
container_start_page | 1328 |
container_title | Human molecular genetics |
container_volume | 22 |
creator | Ackermann, Bastian Kröber, Sandra Torres-Benito, Laura Borgmann, Anke Peters, Miriam Hosseini Barkooie, Seyyed Mohsen Tejero, Rocio Jakubik, Miriam Schreml, Julia Milbradt, Janine Wunderlich, Thomas F Riessland, Markus Tabares, Lucia Wirth, Brunhilde |
description | F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases. |
doi_str_mv | 10.1093/hmg/dds540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323811891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323811891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-1898d0f9f5ad1683aaf864c7d3ee223b6ab0936e4d8d7d6a77e078b89e32e15c3</originalsourceid><addsrcrecordid>eNqNkc1OwzAQhC0EoqVw4QGQjwgp1I5Txzmiij-pEhzgHG3jTevKcYKdVO3bY9TCmdPu4ZvZ0Q4h15zdc1aI6bpZTbUOs4ydkDHPJEtSpsQpGbNCZoksmByRixA2jHGZifycjFKRSqEkH5Pdu4XQG0cFhQataT30GGjojANLmyFUgwVPofdtt97TrQGq0cIeNYVd62jnB2fcioLT1DSdb7dR7XDw7Z92M7iqN5GtjwtY0-8vyVkNNuDVcU7I59Pjx_wlWbw9v84fFkkVA_YJV4XSrC7qGWgulQColcyqXAvENBVLCcv4AomZVjrXEvIcWa6WqkCRIp9VYkJuD74x29eAoS8bEyq0Fhy2Qyi5SIXi8Qz_B8pzJeLLWUTvDmjl2xA81mXnTQN-X3JW_pRSxlLKQykRvjn6DssG9R_624L4BiuDi6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317831090</pqid></control><display><type>article</type><title>Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ackermann, Bastian ; Kröber, Sandra ; Torres-Benito, Laura ; Borgmann, Anke ; Peters, Miriam ; Hosseini Barkooie, Seyyed Mohsen ; Tejero, Rocio ; Jakubik, Miriam ; Schreml, Julia ; Milbradt, Janine ; Wunderlich, Thomas F ; Riessland, Markus ; Tabares, Lucia ; Wirth, Brunhilde</creator><creatorcontrib>Ackermann, Bastian ; Kröber, Sandra ; Torres-Benito, Laura ; Borgmann, Anke ; Peters, Miriam ; Hosseini Barkooie, Seyyed Mohsen ; Tejero, Rocio ; Jakubik, Miriam ; Schreml, Julia ; Milbradt, Janine ; Wunderlich, Thomas F ; Riessland, Markus ; Tabares, Lucia ; Wirth, Brunhilde</creatorcontrib><description>F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/dds540</identifier><identifier>PMID: 23263861</identifier><language>eng</language><publisher>England</publisher><subject>Actins - metabolism ; Animals ; Evoked Potentials, Motor ; Gene Expression ; Humans ; Membrane Glycoproteins - physiology ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Microfilament Proteins - physiology ; Microscopy, Fluorescence ; Motor Endplate - metabolism ; Motor Endplate - pathology ; Motor Endplate - physiopathology ; Motor Neurons - metabolism ; Motor Neurons - pathology ; Muscular Atrophy, Spinal - metabolism ; Muscular Atrophy, Spinal - pathology ; Muscular Atrophy, Spinal - physiopathology ; Phenotype ; Proprioception ; Protein Transport ; Receptors, Cholinergic - metabolism ; Survival of Motor Neuron 1 Protein - metabolism ; Synapses - metabolism ; Synaptic Vesicles - metabolism</subject><ispartof>Human molecular genetics, 2013-04, Vol.22 (7), p.1328-1347</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-1898d0f9f5ad1683aaf864c7d3ee223b6ab0936e4d8d7d6a77e078b89e32e15c3</citedby><cites>FETCH-LOGICAL-c386t-1898d0f9f5ad1683aaf864c7d3ee223b6ab0936e4d8d7d6a77e078b89e32e15c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23263861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ackermann, Bastian</creatorcontrib><creatorcontrib>Kröber, Sandra</creatorcontrib><creatorcontrib>Torres-Benito, Laura</creatorcontrib><creatorcontrib>Borgmann, Anke</creatorcontrib><creatorcontrib>Peters, Miriam</creatorcontrib><creatorcontrib>Hosseini Barkooie, Seyyed Mohsen</creatorcontrib><creatorcontrib>Tejero, Rocio</creatorcontrib><creatorcontrib>Jakubik, Miriam</creatorcontrib><creatorcontrib>Schreml, Julia</creatorcontrib><creatorcontrib>Milbradt, Janine</creatorcontrib><creatorcontrib>Wunderlich, Thomas F</creatorcontrib><creatorcontrib>Riessland, Markus</creatorcontrib><creatorcontrib>Tabares, Lucia</creatorcontrib><creatorcontrib>Wirth, Brunhilde</creatorcontrib><title>Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.</description><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Evoked Potentials, Motor</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Membrane Glycoproteins - physiology</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microfilament Proteins - physiology</subject><subject>Microscopy, Fluorescence</subject><subject>Motor Endplate - metabolism</subject><subject>Motor Endplate - pathology</subject><subject>Motor Endplate - physiopathology</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - pathology</subject><subject>Muscular Atrophy, Spinal - metabolism</subject><subject>Muscular Atrophy, Spinal - pathology</subject><subject>Muscular Atrophy, Spinal - physiopathology</subject><subject>Phenotype</subject><subject>Proprioception</subject><subject>Protein Transport</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>Survival of Motor Neuron 1 Protein - metabolism</subject><subject>Synapses - metabolism</subject><subject>Synaptic Vesicles - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1OwzAQhC0EoqVw4QGQjwgp1I5Txzmiij-pEhzgHG3jTevKcYKdVO3bY9TCmdPu4ZvZ0Q4h15zdc1aI6bpZTbUOs4ydkDHPJEtSpsQpGbNCZoksmByRixA2jHGZifycjFKRSqEkH5Pdu4XQG0cFhQataT30GGjojANLmyFUgwVPofdtt97TrQGq0cIeNYVd62jnB2fcioLT1DSdb7dR7XDw7Z92M7iqN5GtjwtY0-8vyVkNNuDVcU7I59Pjx_wlWbw9v84fFkkVA_YJV4XSrC7qGWgulQColcyqXAvENBVLCcv4AomZVjrXEvIcWa6WqkCRIp9VYkJuD74x29eAoS8bEyq0Fhy2Qyi5SIXi8Qz_B8pzJeLLWUTvDmjl2xA81mXnTQN-X3JW_pRSxlLKQykRvjn6DssG9R_624L4BiuDi6I</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Ackermann, Bastian</creator><creator>Kröber, Sandra</creator><creator>Torres-Benito, Laura</creator><creator>Borgmann, Anke</creator><creator>Peters, Miriam</creator><creator>Hosseini Barkooie, Seyyed Mohsen</creator><creator>Tejero, Rocio</creator><creator>Jakubik, Miriam</creator><creator>Schreml, Julia</creator><creator>Milbradt, Janine</creator><creator>Wunderlich, Thomas F</creator><creator>Riessland, Markus</creator><creator>Tabares, Lucia</creator><creator>Wirth, Brunhilde</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130401</creationdate><title>Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality</title><author>Ackermann, Bastian ; Kröber, Sandra ; Torres-Benito, Laura ; Borgmann, Anke ; Peters, Miriam ; Hosseini Barkooie, Seyyed Mohsen ; Tejero, Rocio ; Jakubik, Miriam ; Schreml, Julia ; Milbradt, Janine ; Wunderlich, Thomas F ; Riessland, Markus ; Tabares, Lucia ; Wirth, Brunhilde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-1898d0f9f5ad1683aaf864c7d3ee223b6ab0936e4d8d7d6a77e078b89e32e15c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Evoked Potentials, Motor</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Membrane Glycoproteins - physiology</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microfilament Proteins - physiology</topic><topic>Microscopy, Fluorescence</topic><topic>Motor Endplate - metabolism</topic><topic>Motor Endplate - pathology</topic><topic>Motor Endplate - physiopathology</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - pathology</topic><topic>Muscular Atrophy, Spinal - metabolism</topic><topic>Muscular Atrophy, Spinal - pathology</topic><topic>Muscular Atrophy, Spinal - physiopathology</topic><topic>Phenotype</topic><topic>Proprioception</topic><topic>Protein Transport</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>Survival of Motor Neuron 1 Protein - metabolism</topic><topic>Synapses - metabolism</topic><topic>Synaptic Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackermann, Bastian</creatorcontrib><creatorcontrib>Kröber, Sandra</creatorcontrib><creatorcontrib>Torres-Benito, Laura</creatorcontrib><creatorcontrib>Borgmann, Anke</creatorcontrib><creatorcontrib>Peters, Miriam</creatorcontrib><creatorcontrib>Hosseini Barkooie, Seyyed Mohsen</creatorcontrib><creatorcontrib>Tejero, Rocio</creatorcontrib><creatorcontrib>Jakubik, Miriam</creatorcontrib><creatorcontrib>Schreml, Julia</creatorcontrib><creatorcontrib>Milbradt, Janine</creatorcontrib><creatorcontrib>Wunderlich, Thomas F</creatorcontrib><creatorcontrib>Riessland, Markus</creatorcontrib><creatorcontrib>Tabares, Lucia</creatorcontrib><creatorcontrib>Wirth, Brunhilde</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackermann, Bastian</au><au>Kröber, Sandra</au><au>Torres-Benito, Laura</au><au>Borgmann, Anke</au><au>Peters, Miriam</au><au>Hosseini Barkooie, Seyyed Mohsen</au><au>Tejero, Rocio</au><au>Jakubik, Miriam</au><au>Schreml, Julia</au><au>Milbradt, Janine</au><au>Wunderlich, Thomas F</au><au>Riessland, Markus</au><au>Tabares, Lucia</au><au>Wirth, Brunhilde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>22</volume><issue>7</issue><spage>1328</spage><epage>1347</epage><pages>1328-1347</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.</abstract><cop>England</cop><pmid>23263861</pmid><doi>10.1093/hmg/dds540</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2013-04, Vol.22 (7), p.1328-1347 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323811891 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Actins - metabolism Animals Evoked Potentials, Motor Gene Expression Humans Membrane Glycoproteins - physiology Mice Mice, 129 Strain Mice, Inbred C57BL Mice, Transgenic Microfilament Proteins - physiology Microscopy, Fluorescence Motor Endplate - metabolism Motor Endplate - pathology Motor Endplate - physiopathology Motor Neurons - metabolism Motor Neurons - pathology Muscular Atrophy, Spinal - metabolism Muscular Atrophy, Spinal - pathology Muscular Atrophy, Spinal - physiopathology Phenotype Proprioception Protein Transport Receptors, Cholinergic - metabolism Survival of Motor Neuron 1 Protein - metabolism Synapses - metabolism Synaptic Vesicles - metabolism |
title | Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastin%203%20ameliorates%20spinal%20muscular%20atrophy%20via%20delayed%20axon%20pruning%20and%20improves%20neuromuscular%20junction%20functionality&rft.jtitle=Human%20molecular%20genetics&rft.au=Ackermann,%20Bastian&rft.date=2013-04-01&rft.volume=22&rft.issue=7&rft.spage=1328&rft.epage=1347&rft.pages=1328-1347&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/dds540&rft_dat=%3Cproquest_cross%3E1323811891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317831090&rft_id=info:pmid/23263861&rfr_iscdi=true |