Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method
Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enha...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2013-04, Vol.97 (7), p.2997-3006 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3006 |
---|---|
container_issue | 7 |
container_start_page | 2997 |
container_title | Applied microbiology and biotechnology |
container_volume | 97 |
creator | Tian, Jian Wang, Ping Huang, Lu Chu, Xiaoyu Wu, Ningfeng Fan, Yunliu |
description | Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from
Ochrobactrum
sp. M231 [
Ochr-
methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within
Ochr
-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The
T
m
and
T
50
of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for
Ochr
-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering. |
doi_str_mv | 10.1007/s00253-012-4411-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323810137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323810137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f4272db736a670ab65cd35e5ed87ef1f0012ed683c0397cff62b4a5f5aba14873</originalsourceid><addsrcrecordid>eNp1kU1LHTEUhoO01KvtD3BTAt24Gc135i6LtCoobnQdMvlwRiY30yRTGPzzzfRaKYKLkECe8-ScvACcYHSGEZLnGSHCaYMwaRjDuJEHYIMZJQ0SmH0AG4QlbyTftofgKOcnVMFWiE_gkNB6Rmi7Ac_XYUrx97B7hKV360oh5qK7YRzKAqOHwZV-GeGkky79EHewX2yKo84O-hQDvDN9ip02Jc0B5ukM3hKK4ZxXpYYmhmkuutRCPY4L1IN19q8z2s_go9djdl9e9mPw8PPH_cVVc3N3eX3x_aYxjJHSeEYksZ2kQguJdCe4sZQ77mwrncd-HctZ0VKD6FYa7wXpmOae605j1kp6DE733jrpr9nlosKQjRtHvXNxzgpTQluMMF3Rb2_Qpzin2vpK4Rbx-nGiUnhPmRRzTs6rKQ1Bp0VhpNZk1D4ZVTtTazJqNX99Mc9dcPa14l8UFSB7INer3aNL_z39rvUPPtOZ5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318053006</pqid></control><display><type>article</type><title>Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tian, Jian ; Wang, Ping ; Huang, Lu ; Chu, Xiaoyu ; Wu, Ningfeng ; Fan, Yunliu</creator><creatorcontrib>Tian, Jian ; Wang, Ping ; Huang, Lu ; Chu, Xiaoyu ; Wu, Ningfeng ; Fan, Yunliu</creatorcontrib><description>Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from
Ochrobactrum
sp. M231 [
Ochr-
methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within
Ochr
-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The
T
m
and
T
50
of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for
Ochr
-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-012-4411-7</identifier><identifier>PMID: 23001009</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Amino acids ; Analysis ; Applied Genetics and Molecular Biotechnology ; Bacteria ; Biomedical and Life Sciences ; Biotechnology ; Computer Simulation ; Design techniques ; DNA Mutational Analysis ; Entropy ; Enzyme Stability ; Enzymes ; Genetic engineering ; Insecticides ; Libraries ; Life Sciences ; Methods ; Methyl parathion ; Methyl Parathion - metabolism ; Microbial Genetics and Genomics ; Microbiology ; Models, Molecular ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutant Proteins - chemistry ; Mutant Proteins - isolation & purification ; Mutant Proteins - metabolism ; Mutants ; Mutation ; Ochrobactrum - enzymology ; Parathion ; Phosphoric Monoester Hydrolases - chemistry ; Phosphoric Monoester Hydrolases - isolation & purification ; Phosphoric Monoester Hydrolases - metabolism ; Protein Conformation ; Protein Engineering - methods ; Protein Stability ; Proteins ; Software ; Studies ; Temperature</subject><ispartof>Applied microbiology and biotechnology, 2013-04, Vol.97 (7), p.2997-3006</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f4272db736a670ab65cd35e5ed87ef1f0012ed683c0397cff62b4a5f5aba14873</citedby><cites>FETCH-LOGICAL-c442t-f4272db736a670ab65cd35e5ed87ef1f0012ed683c0397cff62b4a5f5aba14873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-012-4411-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-012-4411-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23001009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Jian</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Huang, Lu</creatorcontrib><creatorcontrib>Chu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Ningfeng</creatorcontrib><creatorcontrib>Fan, Yunliu</creatorcontrib><title>Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from
Ochrobactrum
sp. M231 [
Ochr-
methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within
Ochr
-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The
T
m
and
T
50
of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for
Ochr
-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Computer Simulation</subject><subject>Design techniques</subject><subject>DNA Mutational Analysis</subject><subject>Entropy</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Genetic engineering</subject><subject>Insecticides</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Methyl parathion</subject><subject>Methyl Parathion - metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - isolation & purification</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Ochrobactrum - enzymology</subject><subject>Parathion</subject><subject>Phosphoric Monoester Hydrolases - chemistry</subject><subject>Phosphoric Monoester Hydrolases - isolation & purification</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Software</subject><subject>Studies</subject><subject>Temperature</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LHTEUhoO01KvtD3BTAt24Gc135i6LtCoobnQdMvlwRiY30yRTGPzzzfRaKYKLkECe8-ScvACcYHSGEZLnGSHCaYMwaRjDuJEHYIMZJQ0SmH0AG4QlbyTftofgKOcnVMFWiE_gkNB6Rmi7Ac_XYUrx97B7hKV360oh5qK7YRzKAqOHwZV-GeGkky79EHewX2yKo84O-hQDvDN9ip02Jc0B5ukM3hKK4ZxXpYYmhmkuutRCPY4L1IN19q8z2s_go9djdl9e9mPw8PPH_cVVc3N3eX3x_aYxjJHSeEYksZ2kQguJdCe4sZQ77mwrncd-HctZ0VKD6FYa7wXpmOae605j1kp6DE733jrpr9nlosKQjRtHvXNxzgpTQluMMF3Rb2_Qpzin2vpK4Rbx-nGiUnhPmRRzTs6rKQ1Bp0VhpNZk1D4ZVTtTazJqNX99Mc9dcPa14l8UFSB7INer3aNL_z39rvUPPtOZ5g</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Tian, Jian</creator><creator>Wang, Ping</creator><creator>Huang, Lu</creator><creator>Chu, Xiaoyu</creator><creator>Wu, Ningfeng</creator><creator>Fan, Yunliu</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20130401</creationdate><title>Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method</title><author>Tian, Jian ; Wang, Ping ; Huang, Lu ; Chu, Xiaoyu ; Wu, Ningfeng ; Fan, Yunliu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f4272db736a670ab65cd35e5ed87ef1f0012ed683c0397cff62b4a5f5aba14873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Computer Simulation</topic><topic>Design techniques</topic><topic>DNA Mutational Analysis</topic><topic>Entropy</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Genetic engineering</topic><topic>Insecticides</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Methyl parathion</topic><topic>Methyl Parathion - metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - isolation & purification</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Ochrobactrum - enzymology</topic><topic>Parathion</topic><topic>Phosphoric Monoester Hydrolases - chemistry</topic><topic>Phosphoric Monoester Hydrolases - isolation & purification</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Software</topic><topic>Studies</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jian</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Huang, Lu</creatorcontrib><creatorcontrib>Chu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Ningfeng</creatorcontrib><creatorcontrib>Fan, Yunliu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Jian</au><au>Wang, Ping</au><au>Huang, Lu</au><au>Chu, Xiaoyu</au><au>Wu, Ningfeng</au><au>Fan, Yunliu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>97</volume><issue>7</issue><spage>2997</spage><epage>3006</epage><pages>2997-3006</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from
Ochrobactrum
sp. M231 [
Ochr-
methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within
Ochr
-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The
T
m
and
T
50
of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for
Ochr
-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23001009</pmid><doi>10.1007/s00253-012-4411-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2013-04, Vol.97 (7), p.2997-3006 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323810137 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amino acids Analysis Applied Genetics and Molecular Biotechnology Bacteria Biomedical and Life Sciences Biotechnology Computer Simulation Design techniques DNA Mutational Analysis Entropy Enzyme Stability Enzymes Genetic engineering Insecticides Libraries Life Sciences Methods Methyl parathion Methyl Parathion - metabolism Microbial Genetics and Genomics Microbiology Models, Molecular Mutagenesis Mutagenesis, Site-Directed Mutant Proteins - chemistry Mutant Proteins - isolation & purification Mutant Proteins - metabolism Mutants Mutation Ochrobactrum - enzymology Parathion Phosphoric Monoester Hydrolases - chemistry Phosphoric Monoester Hydrolases - isolation & purification Phosphoric Monoester Hydrolases - metabolism Protein Conformation Protein Engineering - methods Protein Stability Proteins Software Studies Temperature |
title | Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20thermostability%20of%20methyl%20parathion%20hydrolase%20from%20Ochrobactrum%20sp.%20M231%20using%20a%20computationally%20aided%20method&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tian,%20Jian&rft.date=2013-04-01&rft.volume=97&rft.issue=7&rft.spage=2997&rft.epage=3006&rft.pages=2997-3006&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-012-4411-7&rft_dat=%3Cproquest_cross%3E1323810137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318053006&rft_id=info:pmid/23001009&rfr_iscdi=true |