Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method

Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2013-04, Vol.97 (7), p.2997-3006
Hauptverfasser: Tian, Jian, Wang, Ping, Huang, Lu, Chu, Xiaoyu, Wu, Ningfeng, Fan, Yunliu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3006
container_issue 7
container_start_page 2997
container_title Applied microbiology and biotechnology
container_volume 97
creator Tian, Jian
Wang, Ping
Huang, Lu
Chu, Xiaoyu
Wu, Ningfeng
Fan, Yunliu
description Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [ Ochr- methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr -MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T m and T 50 of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr -MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.
doi_str_mv 10.1007/s00253-012-4411-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323810137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323810137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f4272db736a670ab65cd35e5ed87ef1f0012ed683c0397cff62b4a5f5aba14873</originalsourceid><addsrcrecordid>eNp1kU1LHTEUhoO01KvtD3BTAt24Gc135i6LtCoobnQdMvlwRiY30yRTGPzzzfRaKYKLkECe8-ScvACcYHSGEZLnGSHCaYMwaRjDuJEHYIMZJQ0SmH0AG4QlbyTftofgKOcnVMFWiE_gkNB6Rmi7Ac_XYUrx97B7hKV360oh5qK7YRzKAqOHwZV-GeGkky79EHewX2yKo84O-hQDvDN9ip02Jc0B5ukM3hKK4ZxXpYYmhmkuutRCPY4L1IN19q8z2s_go9djdl9e9mPw8PPH_cVVc3N3eX3x_aYxjJHSeEYksZ2kQguJdCe4sZQ77mwrncd-HctZ0VKD6FYa7wXpmOae605j1kp6DE733jrpr9nlosKQjRtHvXNxzgpTQluMMF3Rb2_Qpzin2vpK4Rbx-nGiUnhPmRRzTs6rKQ1Bp0VhpNZk1D4ZVTtTazJqNX99Mc9dcPa14l8UFSB7INer3aNL_z39rvUPPtOZ5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318053006</pqid></control><display><type>article</type><title>Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tian, Jian ; Wang, Ping ; Huang, Lu ; Chu, Xiaoyu ; Wu, Ningfeng ; Fan, Yunliu</creator><creatorcontrib>Tian, Jian ; Wang, Ping ; Huang, Lu ; Chu, Xiaoyu ; Wu, Ningfeng ; Fan, Yunliu</creatorcontrib><description>Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [ Ochr- methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr -MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T m and T 50 of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr -MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-012-4411-7</identifier><identifier>PMID: 23001009</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Amino acids ; Analysis ; Applied Genetics and Molecular Biotechnology ; Bacteria ; Biomedical and Life Sciences ; Biotechnology ; Computer Simulation ; Design techniques ; DNA Mutational Analysis ; Entropy ; Enzyme Stability ; Enzymes ; Genetic engineering ; Insecticides ; Libraries ; Life Sciences ; Methods ; Methyl parathion ; Methyl Parathion - metabolism ; Microbial Genetics and Genomics ; Microbiology ; Models, Molecular ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutant Proteins - chemistry ; Mutant Proteins - isolation &amp; purification ; Mutant Proteins - metabolism ; Mutants ; Mutation ; Ochrobactrum - enzymology ; Parathion ; Phosphoric Monoester Hydrolases - chemistry ; Phosphoric Monoester Hydrolases - isolation &amp; purification ; Phosphoric Monoester Hydrolases - metabolism ; Protein Conformation ; Protein Engineering - methods ; Protein Stability ; Proteins ; Software ; Studies ; Temperature</subject><ispartof>Applied microbiology and biotechnology, 2013-04, Vol.97 (7), p.2997-3006</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f4272db736a670ab65cd35e5ed87ef1f0012ed683c0397cff62b4a5f5aba14873</citedby><cites>FETCH-LOGICAL-c442t-f4272db736a670ab65cd35e5ed87ef1f0012ed683c0397cff62b4a5f5aba14873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-012-4411-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-012-4411-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23001009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Jian</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Huang, Lu</creatorcontrib><creatorcontrib>Chu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Ningfeng</creatorcontrib><creatorcontrib>Fan, Yunliu</creatorcontrib><title>Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [ Ochr- methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr -MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T m and T 50 of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr -MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Computer Simulation</subject><subject>Design techniques</subject><subject>DNA Mutational Analysis</subject><subject>Entropy</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Genetic engineering</subject><subject>Insecticides</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Methyl parathion</subject><subject>Methyl Parathion - metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - isolation &amp; purification</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Ochrobactrum - enzymology</subject><subject>Parathion</subject><subject>Phosphoric Monoester Hydrolases - chemistry</subject><subject>Phosphoric Monoester Hydrolases - isolation &amp; purification</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Software</subject><subject>Studies</subject><subject>Temperature</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LHTEUhoO01KvtD3BTAt24Gc135i6LtCoobnQdMvlwRiY30yRTGPzzzfRaKYKLkECe8-ScvACcYHSGEZLnGSHCaYMwaRjDuJEHYIMZJQ0SmH0AG4QlbyTftofgKOcnVMFWiE_gkNB6Rmi7Ac_XYUrx97B7hKV360oh5qK7YRzKAqOHwZV-GeGkky79EHewX2yKo84O-hQDvDN9ip02Jc0B5ukM3hKK4ZxXpYYmhmkuutRCPY4L1IN19q8z2s_go9djdl9e9mPw8PPH_cVVc3N3eX3x_aYxjJHSeEYksZ2kQguJdCe4sZQ77mwrncd-HctZ0VKD6FYa7wXpmOae605j1kp6DE733jrpr9nlosKQjRtHvXNxzgpTQluMMF3Rb2_Qpzin2vpK4Rbx-nGiUnhPmRRzTs6rKQ1Bp0VhpNZk1D4ZVTtTazJqNX99Mc9dcPa14l8UFSB7INer3aNL_z39rvUPPtOZ5g</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Tian, Jian</creator><creator>Wang, Ping</creator><creator>Huang, Lu</creator><creator>Chu, Xiaoyu</creator><creator>Wu, Ningfeng</creator><creator>Fan, Yunliu</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20130401</creationdate><title>Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method</title><author>Tian, Jian ; Wang, Ping ; Huang, Lu ; Chu, Xiaoyu ; Wu, Ningfeng ; Fan, Yunliu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f4272db736a670ab65cd35e5ed87ef1f0012ed683c0397cff62b4a5f5aba14873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Computer Simulation</topic><topic>Design techniques</topic><topic>DNA Mutational Analysis</topic><topic>Entropy</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Genetic engineering</topic><topic>Insecticides</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Methyl parathion</topic><topic>Methyl Parathion - metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - isolation &amp; purification</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Ochrobactrum - enzymology</topic><topic>Parathion</topic><topic>Phosphoric Monoester Hydrolases - chemistry</topic><topic>Phosphoric Monoester Hydrolases - isolation &amp; purification</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Software</topic><topic>Studies</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jian</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Huang, Lu</creatorcontrib><creatorcontrib>Chu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Ningfeng</creatorcontrib><creatorcontrib>Fan, Yunliu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Jian</au><au>Wang, Ping</au><au>Huang, Lu</au><au>Chu, Xiaoyu</au><au>Wu, Ningfeng</au><au>Fan, Yunliu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>97</volume><issue>7</issue><spage>2997</spage><epage>3006</epage><pages>2997-3006</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [ Ochr- methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr -MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T m and T 50 of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr -MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23001009</pmid><doi>10.1007/s00253-012-4411-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2013-04, Vol.97 (7), p.2997-3006
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1323810137
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amino acids
Analysis
Applied Genetics and Molecular Biotechnology
Bacteria
Biomedical and Life Sciences
Biotechnology
Computer Simulation
Design techniques
DNA Mutational Analysis
Entropy
Enzyme Stability
Enzymes
Genetic engineering
Insecticides
Libraries
Life Sciences
Methods
Methyl parathion
Methyl Parathion - metabolism
Microbial Genetics and Genomics
Microbiology
Models, Molecular
Mutagenesis
Mutagenesis, Site-Directed
Mutant Proteins - chemistry
Mutant Proteins - isolation & purification
Mutant Proteins - metabolism
Mutants
Mutation
Ochrobactrum - enzymology
Parathion
Phosphoric Monoester Hydrolases - chemistry
Phosphoric Monoester Hydrolases - isolation & purification
Phosphoric Monoester Hydrolases - metabolism
Protein Conformation
Protein Engineering - methods
Protein Stability
Proteins
Software
Studies
Temperature
title Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20thermostability%20of%20methyl%20parathion%20hydrolase%20from%20Ochrobactrum%20sp.%20M231%20using%20a%20computationally%20aided%20method&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tian,%20Jian&rft.date=2013-04-01&rft.volume=97&rft.issue=7&rft.spage=2997&rft.epage=3006&rft.pages=2997-3006&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-012-4411-7&rft_dat=%3Cproquest_cross%3E1323810137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318053006&rft_id=info:pmid/23001009&rfr_iscdi=true