Bacteriostatic effect of sequential hydrodynamic and ultrasound‐induced stress

Aims To elucidate the mechanism of action of a nonchemical microbial control technology employing coupled hydrodynamic and ultrasound‐induced stress. Methods & Results The effects of a laboratory model system using a commercial nonchemical device on Pseudomonas putida revealed growth and respira...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2013-04, Vol.114 (4), p.947-955
Hauptverfasser: Chapman, J.S., Ferguson, R., Consalo, C., Bliss, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 955
container_issue 4
container_start_page 947
container_title Journal of applied microbiology
container_volume 114
creator Chapman, J.S.
Ferguson, R.
Consalo, C.
Bliss, T.
description Aims To elucidate the mechanism of action of a nonchemical microbial control technology employing coupled hydrodynamic and ultrasound‐induced stress. Methods & Results The effects of a laboratory model system using a commercial nonchemical device on Pseudomonas putida revealed growth and respiration were inhibited without a loss of viability from the treated population. Damage to cell membranes was evident using fluorescent microscopy and a reporter strain containing lux genes fused with a membrane damage stress‐response promoter. Other reporter strains also indicated the possible involvement of DNA and protein repair systems. A consequence of treatment was a reduced ability to form biofilms. Conclusions The nonchemical device caused a biostatic effect on treated cells induced by sublethal damage to several cellular systems, including cell membranes. Significance and Impact of the Study The study demonstrates that biostasis can be an effective mechanism for microbial control in some industrial systems and provides insight into understanding and applying this device and other nonchemical microbial control technologies to real‐world problems of microbial contamination.
doi_str_mv 10.1111/jam.12146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323807913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070045451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4166-7089b686ceb8701375e065528e7acbcc266b90d913ddbe952f73fd5e0384c58f3</originalsourceid><addsrcrecordid>eNqN0ctKHTEYB_AgFT1VF75AGShCuxjNZXKZpUoviqILXYdM8oXOYS6nSYYyOx-hz-iTmHpOFQoFs0kWP_7fF_4IHRJ8TPI5WZr-mFBSiS20IEzwkgpJ3z2_q5JjSXfR-xiXGBOGudhBu5QxgbFQC3R7ZmyC0I4xmdTaArwHm4rRFxF-TjCk1nTFj9mF0c2D6bMwgyumLgUTx2lwjw-_28FNFlwRU4AY99G2N12Eg829h-6_frk7_15e3Xy7OD-9Km1FhCglVnUjlLDQKJn3khyw4JwqkMY21lIhmhq7mjDnGqg59ZJ5lxFTleXKsz30aZ27CmNeNCbdt9FC15kBxilqwihTWOaAN1CicB4hRKYf_6HLcQpD_ogmFSO1wpzXWX1eKxvGGAN4vQptb8KsCdZ_GtG5Ef3cSLYfNolT04N7kX8ryOBoA0y0pvPBDLaNr04SLmtcZXeydr_aDub_T9SXp9fr0U_U16G_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431980559</pqid></control><display><type>article</type><title>Bacteriostatic effect of sequential hydrodynamic and ultrasound‐induced stress</title><source>Oxford University Press Journals</source><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Chapman, J.S. ; Ferguson, R. ; Consalo, C. ; Bliss, T.</creator><creatorcontrib>Chapman, J.S. ; Ferguson, R. ; Consalo, C. ; Bliss, T.</creatorcontrib><description>Aims To elucidate the mechanism of action of a nonchemical microbial control technology employing coupled hydrodynamic and ultrasound‐induced stress. Methods &amp; Results The effects of a laboratory model system using a commercial nonchemical device on Pseudomonas putida revealed growth and respiration were inhibited without a loss of viability from the treated population. Damage to cell membranes was evident using fluorescent microscopy and a reporter strain containing lux genes fused with a membrane damage stress‐response promoter. Other reporter strains also indicated the possible involvement of DNA and protein repair systems. A consequence of treatment was a reduced ability to form biofilms. Conclusions The nonchemical device caused a biostatic effect on treated cells induced by sublethal damage to several cellular systems, including cell membranes. Significance and Impact of the Study The study demonstrates that biostasis can be an effective mechanism for microbial control in some industrial systems and provides insight into understanding and applying this device and other nonchemical microbial control technologies to real‐world problems of microbial contamination.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.12146</identifier><identifier>PMID: 23360068</identifier><identifier>CODEN: JAMIFK</identifier><language>eng</language><publisher>Oxford: Blackwell</publisher><subject>antimicrobials ; Bacteria ; biocides ; Biofilms - growth &amp; development ; Biological and medical sciences ; Cell Membrane - pathology ; Cellular biology ; Colony Count, Microbial ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli - radiation effects ; Escherichia coli - ultrastructure ; Fundamental and applied biological sciences. Psychology ; Genes, Reporter ; Hydrodynamics ; mechanism of action ; Microbiology ; Promoter Regions, Genetic ; Pseudomonas putida ; Pseudomonas putida - genetics ; Pseudomonas putida - growth &amp; development ; Pseudomonas putida - radiation effects ; Pseudomonas putida - ultrastructure ; Sound ; Stress, Physiological ; stress‐response ; Ultrasonic imaging ; Ultrasonics</subject><ispartof>Journal of applied microbiology, 2013-04, Vol.114 (4), p.947-955</ispartof><rights>2013 Ashland Inc. © 2013 The Society for Applied Microbiology</rights><rights>2014 INIST-CNRS</rights><rights>2013 Ashland Inc. © 2013 The Society for Applied Microbiology.</rights><rights>Copyright © 2013 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4166-7089b686ceb8701375e065528e7acbcc266b90d913ddbe952f73fd5e0384c58f3</citedby><cites>FETCH-LOGICAL-c4166-7089b686ceb8701375e065528e7acbcc266b90d913ddbe952f73fd5e0384c58f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.12146$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.12146$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27157904$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23360068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, J.S.</creatorcontrib><creatorcontrib>Ferguson, R.</creatorcontrib><creatorcontrib>Consalo, C.</creatorcontrib><creatorcontrib>Bliss, T.</creatorcontrib><title>Bacteriostatic effect of sequential hydrodynamic and ultrasound‐induced stress</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims To elucidate the mechanism of action of a nonchemical microbial control technology employing coupled hydrodynamic and ultrasound‐induced stress. Methods &amp; Results The effects of a laboratory model system using a commercial nonchemical device on Pseudomonas putida revealed growth and respiration were inhibited without a loss of viability from the treated population. Damage to cell membranes was evident using fluorescent microscopy and a reporter strain containing lux genes fused with a membrane damage stress‐response promoter. Other reporter strains also indicated the possible involvement of DNA and protein repair systems. A consequence of treatment was a reduced ability to form biofilms. Conclusions The nonchemical device caused a biostatic effect on treated cells induced by sublethal damage to several cellular systems, including cell membranes. Significance and Impact of the Study The study demonstrates that biostasis can be an effective mechanism for microbial control in some industrial systems and provides insight into understanding and applying this device and other nonchemical microbial control technologies to real‐world problems of microbial contamination.</description><subject>antimicrobials</subject><subject>Bacteria</subject><subject>biocides</subject><subject>Biofilms - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - pathology</subject><subject>Cellular biology</subject><subject>Colony Count, Microbial</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - radiation effects</subject><subject>Escherichia coli - ultrastructure</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Reporter</subject><subject>Hydrodynamics</subject><subject>mechanism of action</subject><subject>Microbiology</subject><subject>Promoter Regions, Genetic</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - genetics</subject><subject>Pseudomonas putida - growth &amp; development</subject><subject>Pseudomonas putida - radiation effects</subject><subject>Pseudomonas putida - ultrastructure</subject><subject>Sound</subject><subject>Stress, Physiological</subject><subject>stress‐response</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonics</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctKHTEYB_AgFT1VF75AGShCuxjNZXKZpUoviqILXYdM8oXOYS6nSYYyOx-hz-iTmHpOFQoFs0kWP_7fF_4IHRJ8TPI5WZr-mFBSiS20IEzwkgpJ3z2_q5JjSXfR-xiXGBOGudhBu5QxgbFQC3R7ZmyC0I4xmdTaArwHm4rRFxF-TjCk1nTFj9mF0c2D6bMwgyumLgUTx2lwjw-_28FNFlwRU4AY99G2N12Eg829h-6_frk7_15e3Xy7OD-9Km1FhCglVnUjlLDQKJn3khyw4JwqkMY21lIhmhq7mjDnGqg59ZJ5lxFTleXKsz30aZ27CmNeNCbdt9FC15kBxilqwihTWOaAN1CicB4hRKYf_6HLcQpD_ogmFSO1wpzXWX1eKxvGGAN4vQptb8KsCdZ_GtG5Ef3cSLYfNolT04N7kX8ryOBoA0y0pvPBDLaNr04SLmtcZXeydr_aDub_T9SXp9fr0U_U16G_</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Chapman, J.S.</creator><creator>Ferguson, R.</creator><creator>Consalo, C.</creator><creator>Bliss, T.</creator><general>Blackwell</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TV</scope></search><sort><creationdate>201304</creationdate><title>Bacteriostatic effect of sequential hydrodynamic and ultrasound‐induced stress</title><author>Chapman, J.S. ; Ferguson, R. ; Consalo, C. ; Bliss, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4166-7089b686ceb8701375e065528e7acbcc266b90d913ddbe952f73fd5e0384c58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>antimicrobials</topic><topic>Bacteria</topic><topic>biocides</topic><topic>Biofilms - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - pathology</topic><topic>Cellular biology</topic><topic>Colony Count, Microbial</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - radiation effects</topic><topic>Escherichia coli - ultrastructure</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Reporter</topic><topic>Hydrodynamics</topic><topic>mechanism of action</topic><topic>Microbiology</topic><topic>Promoter Regions, Genetic</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - genetics</topic><topic>Pseudomonas putida - growth &amp; development</topic><topic>Pseudomonas putida - radiation effects</topic><topic>Pseudomonas putida - ultrastructure</topic><topic>Sound</topic><topic>Stress, Physiological</topic><topic>stress‐response</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, J.S.</creatorcontrib><creatorcontrib>Ferguson, R.</creatorcontrib><creatorcontrib>Consalo, C.</creatorcontrib><creatorcontrib>Bliss, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, J.S.</au><au>Ferguson, R.</au><au>Consalo, C.</au><au>Bliss, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacteriostatic effect of sequential hydrodynamic and ultrasound‐induced stress</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2013-04</date><risdate>2013</risdate><volume>114</volume><issue>4</issue><spage>947</spage><epage>955</epage><pages>947-955</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><coden>JAMIFK</coden><abstract>Aims To elucidate the mechanism of action of a nonchemical microbial control technology employing coupled hydrodynamic and ultrasound‐induced stress. Methods &amp; Results The effects of a laboratory model system using a commercial nonchemical device on Pseudomonas putida revealed growth and respiration were inhibited without a loss of viability from the treated population. Damage to cell membranes was evident using fluorescent microscopy and a reporter strain containing lux genes fused with a membrane damage stress‐response promoter. Other reporter strains also indicated the possible involvement of DNA and protein repair systems. A consequence of treatment was a reduced ability to form biofilms. Conclusions The nonchemical device caused a biostatic effect on treated cells induced by sublethal damage to several cellular systems, including cell membranes. Significance and Impact of the Study The study demonstrates that biostasis can be an effective mechanism for microbial control in some industrial systems and provides insight into understanding and applying this device and other nonchemical microbial control technologies to real‐world problems of microbial contamination.</abstract><cop>Oxford</cop><pub>Blackwell</pub><pmid>23360068</pmid><doi>10.1111/jam.12146</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2013-04, Vol.114 (4), p.947-955
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_1323807913
source Oxford University Press Journals; MEDLINE; Wiley Online Library Journals
subjects antimicrobials
Bacteria
biocides
Biofilms - growth & development
Biological and medical sciences
Cell Membrane - pathology
Cellular biology
Colony Count, Microbial
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - radiation effects
Escherichia coli - ultrastructure
Fundamental and applied biological sciences. Psychology
Genes, Reporter
Hydrodynamics
mechanism of action
Microbiology
Promoter Regions, Genetic
Pseudomonas putida
Pseudomonas putida - genetics
Pseudomonas putida - growth & development
Pseudomonas putida - radiation effects
Pseudomonas putida - ultrastructure
Sound
Stress, Physiological
stress‐response
Ultrasonic imaging
Ultrasonics
title Bacteriostatic effect of sequential hydrodynamic and ultrasound‐induced stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacteriostatic%20effect%20of%20sequential%20hydrodynamic%20and%20ultrasound%E2%80%90induced%20stress&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Chapman,%20J.S.&rft.date=2013-04&rft.volume=114&rft.issue=4&rft.spage=947&rft.epage=955&rft.pages=947-955&rft.issn=1364-5072&rft.eissn=1365-2672&rft.coden=JAMIFK&rft_id=info:doi/10.1111/jam.12146&rft_dat=%3Cproquest_cross%3E3070045451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431980559&rft_id=info:pmid/23360068&rfr_iscdi=true