A genomic toolkit to investigate kinesin and myosin motor function in cells

Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2013-03, Vol.15 (3), p.325-334
Hauptverfasser: Maliga, Zoltan, Junqueira, Magno, Toyoda, Yusuke, Ettinger, Andreas, Mora-Bermúdez, Felipe, Klemm, Robin W., Vasilj, Andrej, Guhr, Elaine, Ibarlucea-Benitez, Itziar, Poser, Ina, Bonifacio, Ezio, Huttner, Wieland B., Shevchenko, Andrej, Hyman, Anthony A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 3
container_start_page 325
container_title Nature cell biology
container_volume 15
creator Maliga, Zoltan
Junqueira, Magno
Toyoda, Yusuke
Ettinger, Andreas
Mora-Bermúdez, Felipe
Klemm, Robin W.
Vasilj, Andrej
Guhr, Elaine
Ibarlucea-Benitez, Itziar
Poser, Ina
Bonifacio, Ezio
Huttner, Wieland B.
Shevchenko, Andrej
Hyman, Anthony A.
description Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein–protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages. Maliga and colleagues have produced a library of bacterial artificial chromosome (BAC) transgenes encoding tagged human kinesin and myosin motors, and have generated a collection of BAC-expressing human and mouse cell lines for the study of motor function.
doi_str_mv 10.1038/ncb2689
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323807900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A329898655</galeid><sourcerecordid>A329898655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-fd9afb469254cc368b944a46f7cf39d37746656e3951922d671e3dd2d333d7183</originalsourceid><addsrcrecordid>eNqNkstu1TAQhiMEoqUg3gBFYkFZpNgex46XRxWFikpIXNaWjy-R28QutlPRt8ehh8upWCAvZmR_8-uf8TTNc4xOMILhTdBbwgbxoDnElLOOMi4erjnrOw6CHDRPcr5ECFOK-OPmgADFHBN82HzYtKMNcfa6LTFOV77U2PpwY3Pxoyq2vfLBZh9aFUw738Y1nWOJqXVL0MXHUOlW22nKT5tHTk3ZPtvFo-br2dsvp--7i4_vzk83F52u3krnjFBuS5kgPdUa2LAVlCrKHNcOhAHOKWM9syB6LAgxjGMLxhADAIbjAY6a4zvd6xS_LdWonH1eHahg45IlBgID4gKh_0AxBTIIAhV9eQ-9jEsKtZGVgr4a_im4o0Y1WemDiyUpvYrKDRAxiIH1faVO_kHVY2yddAzW-Xq_V_B6r6AyxX4vo1pyluefP-2zr-5YnWLOyTp5nfys0q3ESK7bIHfbUMkXu5aW7WzNb-7X9_8ZT65PYbTpr57vaf0Afjm4MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313546900</pqid></control><display><type>article</type><title>A genomic toolkit to investigate kinesin and myosin motor function in cells</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Maliga, Zoltan ; Junqueira, Magno ; Toyoda, Yusuke ; Ettinger, Andreas ; Mora-Bermúdez, Felipe ; Klemm, Robin W. ; Vasilj, Andrej ; Guhr, Elaine ; Ibarlucea-Benitez, Itziar ; Poser, Ina ; Bonifacio, Ezio ; Huttner, Wieland B. ; Shevchenko, Andrej ; Hyman, Anthony A.</creator><creatorcontrib>Maliga, Zoltan ; Junqueira, Magno ; Toyoda, Yusuke ; Ettinger, Andreas ; Mora-Bermúdez, Felipe ; Klemm, Robin W. ; Vasilj, Andrej ; Guhr, Elaine ; Ibarlucea-Benitez, Itziar ; Poser, Ina ; Bonifacio, Ezio ; Huttner, Wieland B. ; Shevchenko, Andrej ; Hyman, Anthony A.</creatorcontrib><description>Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein–protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages. Maliga and colleagues have produced a library of bacterial artificial chromosome (BAC) transgenes encoding tagged human kinesin and myosin motors, and have generated a collection of BAC-expressing human and mouse cell lines for the study of motor function.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb2689</identifier><identifier>PMID: 23417121</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/343/2280 ; 631/61/212 ; 631/80/128/1675 ; 631/80/128/1923 ; Animals ; Artificial chromosomes ; Biological Transport ; Biology ; Biomarkers - metabolism ; Blotting, Western ; Cancer Research ; Cell Biology ; Cell cycle ; Cell division ; Cell Movement - physiology ; Centrosome - metabolism ; Chromatography, Affinity ; Chromosomes, Artificial, Bacterial ; Developmental Biology ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Fluorescent Antibody Technique ; Gene expression ; Gene Expression Profiling ; Genetic aspects ; Genetic engineering ; Genomes ; Genomics ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; HeLa Cells ; Humans ; Immunoprecipitation ; Kinesin ; Kinesin - genetics ; Kinesin - metabolism ; Life Sciences ; Localization ; Mass spectrometry ; Mice ; Mice, Transgenic ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubules ; Mitosis - physiology ; Myosin ; Myosins - genetics ; Myosins - metabolism ; Neuroblastoma - metabolism ; Neuroblastoma - pathology ; Neurons - cytology ; Neurons - metabolism ; Oligonucleotide Array Sequence Analysis ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phylogeny ; Physiological aspects ; Protein Multimerization ; Proteins ; Real-Time Polymerase Chain Reaction ; resource ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; Scientific imaging ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Stem Cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Systems analysis ; Transgenes - genetics</subject><ispartof>Nature cell biology, 2013-03, Vol.15 (3), p.325-334</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-fd9afb469254cc368b944a46f7cf39d37746656e3951922d671e3dd2d333d7183</citedby><cites>FETCH-LOGICAL-c476t-fd9afb469254cc368b944a46f7cf39d37746656e3951922d671e3dd2d333d7183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb2689$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb2689$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23417121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maliga, Zoltan</creatorcontrib><creatorcontrib>Junqueira, Magno</creatorcontrib><creatorcontrib>Toyoda, Yusuke</creatorcontrib><creatorcontrib>Ettinger, Andreas</creatorcontrib><creatorcontrib>Mora-Bermúdez, Felipe</creatorcontrib><creatorcontrib>Klemm, Robin W.</creatorcontrib><creatorcontrib>Vasilj, Andrej</creatorcontrib><creatorcontrib>Guhr, Elaine</creatorcontrib><creatorcontrib>Ibarlucea-Benitez, Itziar</creatorcontrib><creatorcontrib>Poser, Ina</creatorcontrib><creatorcontrib>Bonifacio, Ezio</creatorcontrib><creatorcontrib>Huttner, Wieland B.</creatorcontrib><creatorcontrib>Shevchenko, Andrej</creatorcontrib><creatorcontrib>Hyman, Anthony A.</creatorcontrib><title>A genomic toolkit to investigate kinesin and myosin motor function in cells</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein–protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages. Maliga and colleagues have produced a library of bacterial artificial chromosome (BAC) transgenes encoding tagged human kinesin and myosin motors, and have generated a collection of BAC-expressing human and mouse cell lines for the study of motor function.</description><subject>631/57/343/2280</subject><subject>631/61/212</subject><subject>631/80/128/1675</subject><subject>631/80/128/1923</subject><subject>Animals</subject><subject>Artificial chromosomes</subject><subject>Biological Transport</subject><subject>Biology</subject><subject>Biomarkers - metabolism</subject><subject>Blotting, Western</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell Movement - physiology</subject><subject>Centrosome - metabolism</subject><subject>Chromatography, Affinity</subject><subject>Chromosomes, Artificial, Bacterial</subject><subject>Developmental Biology</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Kinesin</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Mass spectrometry</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules</subject><subject>Mitosis - physiology</subject><subject>Myosin</subject><subject>Myosins - genetics</subject><subject>Myosins - metabolism</subject><subject>Neuroblastoma - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>resource</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>Scientific imaging</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Stem Cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Systems analysis</subject><subject>Transgenes - genetics</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkstu1TAQhiMEoqUg3gBFYkFZpNgex46XRxWFikpIXNaWjy-R28QutlPRt8ehh8upWCAvZmR_8-uf8TTNc4xOMILhTdBbwgbxoDnElLOOMi4erjnrOw6CHDRPcr5ECFOK-OPmgADFHBN82HzYtKMNcfa6LTFOV77U2PpwY3Pxoyq2vfLBZh9aFUw738Y1nWOJqXVL0MXHUOlW22nKT5tHTk3ZPtvFo-br2dsvp--7i4_vzk83F52u3krnjFBuS5kgPdUa2LAVlCrKHNcOhAHOKWM9syB6LAgxjGMLxhADAIbjAY6a4zvd6xS_LdWonH1eHahg45IlBgID4gKh_0AxBTIIAhV9eQ-9jEsKtZGVgr4a_im4o0Y1WemDiyUpvYrKDRAxiIH1faVO_kHVY2yddAzW-Xq_V_B6r6AyxX4vo1pyluefP-2zr-5YnWLOyTp5nfys0q3ESK7bIHfbUMkXu5aW7WzNb-7X9_8ZT65PYbTpr57vaf0Afjm4MA</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Maliga, Zoltan</creator><creator>Junqueira, Magno</creator><creator>Toyoda, Yusuke</creator><creator>Ettinger, Andreas</creator><creator>Mora-Bermúdez, Felipe</creator><creator>Klemm, Robin W.</creator><creator>Vasilj, Andrej</creator><creator>Guhr, Elaine</creator><creator>Ibarlucea-Benitez, Itziar</creator><creator>Poser, Ina</creator><creator>Bonifacio, Ezio</creator><creator>Huttner, Wieland B.</creator><creator>Shevchenko, Andrej</creator><creator>Hyman, Anthony A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130301</creationdate><title>A genomic toolkit to investigate kinesin and myosin motor function in cells</title><author>Maliga, Zoltan ; Junqueira, Magno ; Toyoda, Yusuke ; Ettinger, Andreas ; Mora-Bermúdez, Felipe ; Klemm, Robin W. ; Vasilj, Andrej ; Guhr, Elaine ; Ibarlucea-Benitez, Itziar ; Poser, Ina ; Bonifacio, Ezio ; Huttner, Wieland B. ; Shevchenko, Andrej ; Hyman, Anthony A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-fd9afb469254cc368b944a46f7cf39d37746656e3951922d671e3dd2d333d7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/57/343/2280</topic><topic>631/61/212</topic><topic>631/80/128/1675</topic><topic>631/80/128/1923</topic><topic>Animals</topic><topic>Artificial chromosomes</topic><topic>Biological Transport</topic><topic>Biology</topic><topic>Biomarkers - metabolism</topic><topic>Blotting, Western</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell Movement - physiology</topic><topic>Centrosome - metabolism</topic><topic>Chromatography, Affinity</topic><topic>Chromosomes, Artificial, Bacterial</topic><topic>Developmental Biology</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Kinesin</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Mass spectrometry</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules</topic><topic>Mitosis - physiology</topic><topic>Myosin</topic><topic>Myosins - genetics</topic><topic>Myosins - metabolism</topic><topic>Neuroblastoma - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>resource</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>Scientific imaging</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Stem Cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Systems analysis</topic><topic>Transgenes - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maliga, Zoltan</creatorcontrib><creatorcontrib>Junqueira, Magno</creatorcontrib><creatorcontrib>Toyoda, Yusuke</creatorcontrib><creatorcontrib>Ettinger, Andreas</creatorcontrib><creatorcontrib>Mora-Bermúdez, Felipe</creatorcontrib><creatorcontrib>Klemm, Robin W.</creatorcontrib><creatorcontrib>Vasilj, Andrej</creatorcontrib><creatorcontrib>Guhr, Elaine</creatorcontrib><creatorcontrib>Ibarlucea-Benitez, Itziar</creatorcontrib><creatorcontrib>Poser, Ina</creatorcontrib><creatorcontrib>Bonifacio, Ezio</creatorcontrib><creatorcontrib>Huttner, Wieland B.</creatorcontrib><creatorcontrib>Shevchenko, Andrej</creatorcontrib><creatorcontrib>Hyman, Anthony A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maliga, Zoltan</au><au>Junqueira, Magno</au><au>Toyoda, Yusuke</au><au>Ettinger, Andreas</au><au>Mora-Bermúdez, Felipe</au><au>Klemm, Robin W.</au><au>Vasilj, Andrej</au><au>Guhr, Elaine</au><au>Ibarlucea-Benitez, Itziar</au><au>Poser, Ina</au><au>Bonifacio, Ezio</au><au>Huttner, Wieland B.</au><au>Shevchenko, Andrej</au><au>Hyman, Anthony A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genomic toolkit to investigate kinesin and myosin motor function in cells</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>15</volume><issue>3</issue><spage>325</spage><epage>334</epage><pages>325-334</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein–protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages. Maliga and colleagues have produced a library of bacterial artificial chromosome (BAC) transgenes encoding tagged human kinesin and myosin motors, and have generated a collection of BAC-expressing human and mouse cell lines for the study of motor function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23417121</pmid><doi>10.1038/ncb2689</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2013-03, Vol.15 (3), p.325-334
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_1323807900
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/57/343/2280
631/61/212
631/80/128/1675
631/80/128/1923
Animals
Artificial chromosomes
Biological Transport
Biology
Biomarkers - metabolism
Blotting, Western
Cancer Research
Cell Biology
Cell cycle
Cell division
Cell Movement - physiology
Centrosome - metabolism
Chromatography, Affinity
Chromosomes, Artificial, Bacterial
Developmental Biology
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Fluorescent Antibody Technique
Gene expression
Gene Expression Profiling
Genetic aspects
Genetic engineering
Genomes
Genomics
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
HeLa Cells
Humans
Immunoprecipitation
Kinesin
Kinesin - genetics
Kinesin - metabolism
Life Sciences
Localization
Mass spectrometry
Mice
Mice, Transgenic
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Microtubules
Mitosis - physiology
Myosin
Myosins - genetics
Myosins - metabolism
Neuroblastoma - metabolism
Neuroblastoma - pathology
Neurons - cytology
Neurons - metabolism
Oligonucleotide Array Sequence Analysis
Phosphoproteins - genetics
Phosphoproteins - metabolism
Phylogeny
Physiological aspects
Protein Multimerization
Proteins
Real-Time Polymerase Chain Reaction
resource
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Scientific imaging
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Stem Cells
Stem Cells - cytology
Stem Cells - metabolism
Systems analysis
Transgenes - genetics
title A genomic toolkit to investigate kinesin and myosin motor function in cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genomic%20toolkit%20to%20investigate%20kinesin%20and%20myosin%20motor%20function%20in%20cells&rft.jtitle=Nature%20cell%20biology&rft.au=Maliga,%20Zoltan&rft.date=2013-03-01&rft.volume=15&rft.issue=3&rft.spage=325&rft.epage=334&rft.pages=325-334&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb2689&rft_dat=%3Cgale_proqu%3EA329898655%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313546900&rft_id=info:pmid/23417121&rft_galeid=A329898655&rfr_iscdi=true