Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system

Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2013-04, Vol.365 (1/2), p.239-254
Hauptverfasser: Güereña, David, Lehmann, Johannes, Hanley, Kelly, Enders, Akio, Hyland, Charles, Riha, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 1/2
container_start_page 239
container_title Plant and soil
container_volume 365
creator Güereña, David
Lehmann, Johannes
Hanley, Kelly
Enders, Akio
Hyland, Charles
Riha, Susan
description Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 tha 1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha⁻¹). Nitrogen fertilizer enriched with ¹⁵N was applied in 2009 to the 0 and 12 tha⁻¹ of biochar at 100 and 50 % secondary N application. Results Maize yield and plant N uptake did not change with biochar additions (p>0.05; n=3). Less N (by 82 %; p
doi_str_mv 10.1007/s11104-012-1383-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323805272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A375951727</galeid><jstor_id>42952347</jstor_id><sourcerecordid>A375951727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-99114437e3be0fdc60b1ad0bbf80b6c1d0788c86f19e2c431ab185ea50331d813</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhgdRcG39AR6EgAheps2XZCYzx6WoLZR6sdBbyGS-bLPMJGOSRdZfb9YpRTxIDiHJ83y8M29VvQN6AZTKywQAVNQUWA2847V4UW2gkbxuKG9fVhtKOaup7B9eV29S2tPTGdpNle9cjmGHnoxHr2dnErFhmsJP53fEOpxGopdlckZnFzwJlgwumEcdifNEk4zzglFnJHch5keynTEW1pNZu19YDzrhSJYYxoP546djKsp59crqKeHbp_2suv_y-fvVdX377evN1fa2NkLQXPc9gBBcIh-Q2tG0dAA90mGwHR1aAyOVXWe61kKPzAgOeoCuQV0-mcPYAT-rPq1zS4IfB0xZzS4ZnCbtMRySAs54RxsmWUE__IPuwyH6kq5QTdu3rICFulipnZ5QOW9DjtqUNWL5dcGjdeV-y2XTNyCZLAKsgokhpYhWLdHNOh4VUHUqTq3FqVKcOhWnRHE-PkXRyejJRu2NS88ik00nSnmFYyuXypPfYfwr8n-Gv1-lfcohPg8VrG8YF5L_Bk_VseE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356962805</pqid></control><display><type>article</type><title>Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system</title><source>Springer Journals</source><source>JSTOR</source><creator>Güereña, David ; Lehmann, Johannes ; Hanley, Kelly ; Enders, Akio ; Hyland, Charles ; Riha, Susan</creator><creatorcontrib>Güereña, David ; Lehmann, Johannes ; Hanley, Kelly ; Enders, Akio ; Hyland, Charles ; Riha, Susan</creatorcontrib><description>Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 tha 1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha⁻¹). Nitrogen fertilizer enriched with ¹⁵N was applied in 2009 to the 0 and 12 tha⁻¹ of biochar at 100 and 50 % secondary N application. Results Maize yield and plant N uptake did not change with biochar additions (p&gt;0.05; n=3). Less N (by 82 %; p&lt;0.05) was lost after biochar application through leaching only at 100 % N fertilization. The reason for an observed 140 % greater retention of applied ¹⁵N in the topsoil may have been the incorporation of added ¹⁵N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer ¹⁵N (0.42 % of applied N; p&lt;0.05) and comparatively high recovery of applied ¹⁵N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar. Conclusions Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-012-1383-4</identifier><identifier>CODEN: PLSOA2</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Agricultural land ; Agricultural research ; Agricultural soils ; Agrology ; Agronomy. Soil science and plant productions ; Animal, plant and microbial ecology ; Biochar ; Biological and medical sciences ; Biomedical and Life Sciences ; Cereal crops ; Charcoal ; Corn ; Crop production ; Crop science ; Cropping systems ; Ecology ; Environmental aspects ; Fertilizers ; Field tests ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Leaching ; Life Sciences ; Microbial biomass ; Nitrogen ; Nitrogen content ; Plant biology ; Plant Physiology ; Plant Sciences ; Plant-soil relationships ; Regular Article ; Retention ; Soil conditioners ; Soil fertility ; Soil microorganisms ; Soil pollution ; Soil Science &amp; Conservation ; Soil water ; Soil-plant relationships. Soil fertility ; Soil-plant relationships. Soil fertility. Fertilization. Amendments ; Soils ; Stover ; Topsoil ; Tropical environments ; Zea mays</subject><ispartof>Plant and soil, 2013-04, Vol.365 (1/2), p.239-254</ispartof><rights>2013 Springer</rights><rights>Springer Science+Business Media B.V. 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-99114437e3be0fdc60b1ad0bbf80b6c1d0788c86f19e2c431ab185ea50331d813</citedby><cites>FETCH-LOGICAL-c440t-99114437e3be0fdc60b1ad0bbf80b6c1d0788c86f19e2c431ab185ea50331d813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42952347$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42952347$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27584321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Güereña, David</creatorcontrib><creatorcontrib>Lehmann, Johannes</creatorcontrib><creatorcontrib>Hanley, Kelly</creatorcontrib><creatorcontrib>Enders, Akio</creatorcontrib><creatorcontrib>Hyland, Charles</creatorcontrib><creatorcontrib>Riha, Susan</creatorcontrib><title>Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 tha 1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha⁻¹). Nitrogen fertilizer enriched with ¹⁵N was applied in 2009 to the 0 and 12 tha⁻¹ of biochar at 100 and 50 % secondary N application. Results Maize yield and plant N uptake did not change with biochar additions (p&gt;0.05; n=3). Less N (by 82 %; p&lt;0.05) was lost after biochar application through leaching only at 100 % N fertilization. The reason for an observed 140 % greater retention of applied ¹⁵N in the topsoil may have been the incorporation of added ¹⁵N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer ¹⁵N (0.42 % of applied N; p&lt;0.05) and comparatively high recovery of applied ¹⁵N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar. Conclusions Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.</description><subject>Agricultural land</subject><subject>Agricultural research</subject><subject>Agricultural soils</subject><subject>Agrology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Animal, plant and microbial ecology</subject><subject>Biochar</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Cereal crops</subject><subject>Charcoal</subject><subject>Corn</subject><subject>Crop production</subject><subject>Crop science</subject><subject>Cropping systems</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>Fertilizers</subject><subject>Field tests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Microbial biomass</subject><subject>Nitrogen</subject><subject>Nitrogen content</subject><subject>Plant biology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant-soil relationships</subject><subject>Regular Article</subject><subject>Retention</subject><subject>Soil conditioners</subject><subject>Soil fertility</subject><subject>Soil microorganisms</subject><subject>Soil pollution</subject><subject>Soil Science &amp; Conservation</subject><subject>Soil water</subject><subject>Soil-plant relationships. Soil fertility</subject><subject>Soil-plant relationships. Soil fertility. Fertilization. Amendments</subject><subject>Soils</subject><subject>Stover</subject><subject>Topsoil</subject><subject>Tropical environments</subject><subject>Zea mays</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUFrFDEYhgdRcG39AR6EgAheps2XZCYzx6WoLZR6sdBbyGS-bLPMJGOSRdZfb9YpRTxIDiHJ83y8M29VvQN6AZTKywQAVNQUWA2847V4UW2gkbxuKG9fVhtKOaup7B9eV29S2tPTGdpNle9cjmGHnoxHr2dnErFhmsJP53fEOpxGopdlckZnFzwJlgwumEcdifNEk4zzglFnJHch5keynTEW1pNZu19YDzrhSJYYxoP546djKsp59crqKeHbp_2suv_y-fvVdX377evN1fa2NkLQXPc9gBBcIh-Q2tG0dAA90mGwHR1aAyOVXWe61kKPzAgOeoCuQV0-mcPYAT-rPq1zS4IfB0xZzS4ZnCbtMRySAs54RxsmWUE__IPuwyH6kq5QTdu3rICFulipnZ5QOW9DjtqUNWL5dcGjdeV-y2XTNyCZLAKsgokhpYhWLdHNOh4VUHUqTq3FqVKcOhWnRHE-PkXRyejJRu2NS88ik00nSnmFYyuXypPfYfwr8n-Gv1-lfcohPg8VrG8YF5L_Bk_VseE</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Güereña, David</creator><creator>Lehmann, Johannes</creator><creator>Hanley, Kelly</creator><creator>Enders, Akio</creator><creator>Hyland, Charles</creator><creator>Riha, Susan</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>20130401</creationdate><title>Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system</title><author>Güereña, David ; Lehmann, Johannes ; Hanley, Kelly ; Enders, Akio ; Hyland, Charles ; Riha, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-99114437e3be0fdc60b1ad0bbf80b6c1d0788c86f19e2c431ab185ea50331d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural land</topic><topic>Agricultural research</topic><topic>Agricultural soils</topic><topic>Agrology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Animal, plant and microbial ecology</topic><topic>Biochar</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Cereal crops</topic><topic>Charcoal</topic><topic>Corn</topic><topic>Crop production</topic><topic>Crop science</topic><topic>Cropping systems</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>Fertilizers</topic><topic>Field tests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Microbial biomass</topic><topic>Nitrogen</topic><topic>Nitrogen content</topic><topic>Plant biology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant-soil relationships</topic><topic>Regular Article</topic><topic>Retention</topic><topic>Soil conditioners</topic><topic>Soil fertility</topic><topic>Soil microorganisms</topic><topic>Soil pollution</topic><topic>Soil Science &amp; Conservation</topic><topic>Soil water</topic><topic>Soil-plant relationships. Soil fertility</topic><topic>Soil-plant relationships. Soil fertility. Fertilization. Amendments</topic><topic>Soils</topic><topic>Stover</topic><topic>Topsoil</topic><topic>Tropical environments</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Güereña, David</creatorcontrib><creatorcontrib>Lehmann, Johannes</creatorcontrib><creatorcontrib>Hanley, Kelly</creatorcontrib><creatorcontrib>Enders, Akio</creatorcontrib><creatorcontrib>Hyland, Charles</creatorcontrib><creatorcontrib>Riha, Susan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güereña, David</au><au>Lehmann, Johannes</au><au>Hanley, Kelly</au><au>Enders, Akio</au><au>Hyland, Charles</au><au>Riha, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>365</volume><issue>1/2</issue><spage>239</spage><epage>254</epage><pages>239-254</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><coden>PLSOA2</coden><abstract>Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 tha 1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha⁻¹). Nitrogen fertilizer enriched with ¹⁵N was applied in 2009 to the 0 and 12 tha⁻¹ of biochar at 100 and 50 % secondary N application. Results Maize yield and plant N uptake did not change with biochar additions (p&gt;0.05; n=3). Less N (by 82 %; p&lt;0.05) was lost after biochar application through leaching only at 100 % N fertilization. The reason for an observed 140 % greater retention of applied ¹⁵N in the topsoil may have been the incorporation of added ¹⁵N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer ¹⁵N (0.42 % of applied N; p&lt;0.05) and comparatively high recovery of applied ¹⁵N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar. Conclusions Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11104-012-1383-4</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2013-04, Vol.365 (1/2), p.239-254
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_miscellaneous_1323805272
source Springer Journals; JSTOR
subjects Agricultural land
Agricultural research
Agricultural soils
Agrology
Agronomy. Soil science and plant productions
Animal, plant and microbial ecology
Biochar
Biological and medical sciences
Biomedical and Life Sciences
Cereal crops
Charcoal
Corn
Crop production
Crop science
Cropping systems
Ecology
Environmental aspects
Fertilizers
Field tests
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Leaching
Life Sciences
Microbial biomass
Nitrogen
Nitrogen content
Plant biology
Plant Physiology
Plant Sciences
Plant-soil relationships
Regular Article
Retention
Soil conditioners
Soil fertility
Soil microorganisms
Soil pollution
Soil Science & Conservation
Soil water
Soil-plant relationships. Soil fertility
Soil-plant relationships. Soil fertility. Fertilization. Amendments
Soils
Stover
Topsoil
Tropical environments
Zea mays
title Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20dynamics%20following%20field%20application%20of%20biochar%20in%20a%20temperate%20North%20American%20maize-based%20production%20system&rft.jtitle=Plant%20and%20soil&rft.au=G%C3%BCere%C3%B1a,%20David&rft.date=2013-04-01&rft.volume=365&rft.issue=1/2&rft.spage=239&rft.epage=254&rft.pages=239-254&rft.issn=0032-079X&rft.eissn=1573-5036&rft.coden=PLSOA2&rft_id=info:doi/10.1007/s11104-012-1383-4&rft_dat=%3Cgale_proqu%3EA375951727%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356962805&rft_id=info:pmid/&rft_galeid=A375951727&rft_jstor_id=42952347&rfr_iscdi=true