Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system
Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from ma...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2013-04, Vol.365 (1/2), p.239-254 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 1/2 |
container_start_page | 239 |
container_title | Plant and soil |
container_volume | 365 |
creator | Güereña, David Lehmann, Johannes Hanley, Kelly Enders, Akio Hyland, Charles Riha, Susan |
description | Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 tha 1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha⁻¹). Nitrogen fertilizer enriched with ¹⁵N was applied in 2009 to the 0 and 12 tha⁻¹ of biochar at 100 and 50 % secondary N application. Results Maize yield and plant N uptake did not change with biochar additions (p>0.05; n=3). Less N (by 82 %; p |
doi_str_mv | 10.1007/s11104-012-1383-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323805272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A375951727</galeid><jstor_id>42952347</jstor_id><sourcerecordid>A375951727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-99114437e3be0fdc60b1ad0bbf80b6c1d0788c86f19e2c431ab185ea50331d813</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhgdRcG39AR6EgAheps2XZCYzx6WoLZR6sdBbyGS-bLPMJGOSRdZfb9YpRTxIDiHJ83y8M29VvQN6AZTKywQAVNQUWA2847V4UW2gkbxuKG9fVhtKOaup7B9eV29S2tPTGdpNle9cjmGHnoxHr2dnErFhmsJP53fEOpxGopdlckZnFzwJlgwumEcdifNEk4zzglFnJHch5keynTEW1pNZu19YDzrhSJYYxoP546djKsp59crqKeHbp_2suv_y-fvVdX377evN1fa2NkLQXPc9gBBcIh-Q2tG0dAA90mGwHR1aAyOVXWe61kKPzAgOeoCuQV0-mcPYAT-rPq1zS4IfB0xZzS4ZnCbtMRySAs54RxsmWUE__IPuwyH6kq5QTdu3rICFulipnZ5QOW9DjtqUNWL5dcGjdeV-y2XTNyCZLAKsgokhpYhWLdHNOh4VUHUqTq3FqVKcOhWnRHE-PkXRyejJRu2NS88ik00nSnmFYyuXypPfYfwr8n-Gv1-lfcohPg8VrG8YF5L_Bk_VseE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356962805</pqid></control><display><type>article</type><title>Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system</title><source>Springer Journals</source><source>JSTOR</source><creator>Güereña, David ; Lehmann, Johannes ; Hanley, Kelly ; Enders, Akio ; Hyland, Charles ; Riha, Susan</creator><creatorcontrib>Güereña, David ; Lehmann, Johannes ; Hanley, Kelly ; Enders, Akio ; Hyland, Charles ; Riha, Susan</creatorcontrib><description>Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 tha 1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha⁻¹). Nitrogen fertilizer enriched with ¹⁵N was applied in 2009 to the 0 and 12 tha⁻¹ of biochar at 100 and 50 % secondary N application. Results Maize yield and plant N uptake did not change with biochar additions (p>0.05; n=3). Less N (by 82 %; p<0.05) was lost after biochar application through leaching only at 100 % N fertilization. The reason for an observed 140 % greater retention of applied ¹⁵N in the topsoil may have been the incorporation of added ¹⁵N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer ¹⁵N (0.42 % of applied N; p<0.05) and comparatively high recovery of applied ¹⁵N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar. Conclusions Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-012-1383-4</identifier><identifier>CODEN: PLSOA2</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Agricultural land ; Agricultural research ; Agricultural soils ; Agrology ; Agronomy. Soil science and plant productions ; Animal, plant and microbial ecology ; Biochar ; Biological and medical sciences ; Biomedical and Life Sciences ; Cereal crops ; Charcoal ; Corn ; Crop production ; Crop science ; Cropping systems ; Ecology ; Environmental aspects ; Fertilizers ; Field tests ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Leaching ; Life Sciences ; Microbial biomass ; Nitrogen ; Nitrogen content ; Plant biology ; Plant Physiology ; Plant Sciences ; Plant-soil relationships ; Regular Article ; Retention ; Soil conditioners ; Soil fertility ; Soil microorganisms ; Soil pollution ; Soil Science & Conservation ; Soil water ; Soil-plant relationships. Soil fertility ; Soil-plant relationships. Soil fertility. Fertilization. Amendments ; Soils ; Stover ; Topsoil ; Tropical environments ; Zea mays</subject><ispartof>Plant and soil, 2013-04, Vol.365 (1/2), p.239-254</ispartof><rights>2013 Springer</rights><rights>Springer Science+Business Media B.V. 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-99114437e3be0fdc60b1ad0bbf80b6c1d0788c86f19e2c431ab185ea50331d813</citedby><cites>FETCH-LOGICAL-c440t-99114437e3be0fdc60b1ad0bbf80b6c1d0788c86f19e2c431ab185ea50331d813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42952347$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42952347$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27584321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Güereña, David</creatorcontrib><creatorcontrib>Lehmann, Johannes</creatorcontrib><creatorcontrib>Hanley, Kelly</creatorcontrib><creatorcontrib>Enders, Akio</creatorcontrib><creatorcontrib>Hyland, Charles</creatorcontrib><creatorcontrib>Riha, Susan</creatorcontrib><title>Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 tha 1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha⁻¹). Nitrogen fertilizer enriched with ¹⁵N was applied in 2009 to the 0 and 12 tha⁻¹ of biochar at 100 and 50 % secondary N application. Results Maize yield and plant N uptake did not change with biochar additions (p>0.05; n=3). Less N (by 82 %; p<0.05) was lost after biochar application through leaching only at 100 % N fertilization. The reason for an observed 140 % greater retention of applied ¹⁵N in the topsoil may have been the incorporation of added ¹⁵N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer ¹⁵N (0.42 % of applied N; p<0.05) and comparatively high recovery of applied ¹⁵N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar. Conclusions Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.</description><subject>Agricultural land</subject><subject>Agricultural research</subject><subject>Agricultural soils</subject><subject>Agrology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Animal, plant and microbial ecology</subject><subject>Biochar</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Cereal crops</subject><subject>Charcoal</subject><subject>Corn</subject><subject>Crop production</subject><subject>Crop science</subject><subject>Cropping systems</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>Fertilizers</subject><subject>Field tests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Microbial biomass</subject><subject>Nitrogen</subject><subject>Nitrogen content</subject><subject>Plant biology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant-soil relationships</subject><subject>Regular Article</subject><subject>Retention</subject><subject>Soil conditioners</subject><subject>Soil fertility</subject><subject>Soil microorganisms</subject><subject>Soil pollution</subject><subject>Soil Science & Conservation</subject><subject>Soil water</subject><subject>Soil-plant relationships. Soil fertility</subject><subject>Soil-plant relationships. Soil fertility. Fertilization. Amendments</subject><subject>Soils</subject><subject>Stover</subject><subject>Topsoil</subject><subject>Tropical environments</subject><subject>Zea mays</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUFrFDEYhgdRcG39AR6EgAheps2XZCYzx6WoLZR6sdBbyGS-bLPMJGOSRdZfb9YpRTxIDiHJ83y8M29VvQN6AZTKywQAVNQUWA2847V4UW2gkbxuKG9fVhtKOaup7B9eV29S2tPTGdpNle9cjmGHnoxHr2dnErFhmsJP53fEOpxGopdlckZnFzwJlgwumEcdifNEk4zzglFnJHch5keynTEW1pNZu19YDzrhSJYYxoP546djKsp59crqKeHbp_2suv_y-fvVdX377evN1fa2NkLQXPc9gBBcIh-Q2tG0dAA90mGwHR1aAyOVXWe61kKPzAgOeoCuQV0-mcPYAT-rPq1zS4IfB0xZzS4ZnCbtMRySAs54RxsmWUE__IPuwyH6kq5QTdu3rICFulipnZ5QOW9DjtqUNWL5dcGjdeV-y2XTNyCZLAKsgokhpYhWLdHNOh4VUHUqTq3FqVKcOhWnRHE-PkXRyejJRu2NS88ik00nSnmFYyuXypPfYfwr8n-Gv1-lfcohPg8VrG8YF5L_Bk_VseE</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Güereña, David</creator><creator>Lehmann, Johannes</creator><creator>Hanley, Kelly</creator><creator>Enders, Akio</creator><creator>Hyland, Charles</creator><creator>Riha, Susan</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>20130401</creationdate><title>Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system</title><author>Güereña, David ; Lehmann, Johannes ; Hanley, Kelly ; Enders, Akio ; Hyland, Charles ; Riha, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-99114437e3be0fdc60b1ad0bbf80b6c1d0788c86f19e2c431ab185ea50331d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural land</topic><topic>Agricultural research</topic><topic>Agricultural soils</topic><topic>Agrology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Animal, plant and microbial ecology</topic><topic>Biochar</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Cereal crops</topic><topic>Charcoal</topic><topic>Corn</topic><topic>Crop production</topic><topic>Crop science</topic><topic>Cropping systems</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>Fertilizers</topic><topic>Field tests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Microbial biomass</topic><topic>Nitrogen</topic><topic>Nitrogen content</topic><topic>Plant biology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant-soil relationships</topic><topic>Regular Article</topic><topic>Retention</topic><topic>Soil conditioners</topic><topic>Soil fertility</topic><topic>Soil microorganisms</topic><topic>Soil pollution</topic><topic>Soil Science & Conservation</topic><topic>Soil water</topic><topic>Soil-plant relationships. Soil fertility</topic><topic>Soil-plant relationships. Soil fertility. Fertilization. Amendments</topic><topic>Soils</topic><topic>Stover</topic><topic>Topsoil</topic><topic>Tropical environments</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Güereña, David</creatorcontrib><creatorcontrib>Lehmann, Johannes</creatorcontrib><creatorcontrib>Hanley, Kelly</creatorcontrib><creatorcontrib>Enders, Akio</creatorcontrib><creatorcontrib>Hyland, Charles</creatorcontrib><creatorcontrib>Riha, Susan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güereña, David</au><au>Lehmann, Johannes</au><au>Hanley, Kelly</au><au>Enders, Akio</au><au>Hyland, Charles</au><au>Riha, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>365</volume><issue>1/2</issue><spage>239</spage><epage>254</epage><pages>239-254</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><coden>PLSOA2</coden><abstract>Background and aims Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention. Methods Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 tha 1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha⁻¹). Nitrogen fertilizer enriched with ¹⁵N was applied in 2009 to the 0 and 12 tha⁻¹ of biochar at 100 and 50 % secondary N application. Results Maize yield and plant N uptake did not change with biochar additions (p>0.05; n=3). Less N (by 82 %; p<0.05) was lost after biochar application through leaching only at 100 % N fertilization. The reason for an observed 140 % greater retention of applied ¹⁵N in the topsoil may have been the incorporation of added ¹⁵N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer ¹⁵N (0.42 % of applied N; p<0.05) and comparatively high recovery of applied ¹⁵N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar. Conclusions Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11104-012-1383-4</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-079X |
ispartof | Plant and soil, 2013-04, Vol.365 (1/2), p.239-254 |
issn | 0032-079X 1573-5036 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323805272 |
source | Springer Journals; JSTOR |
subjects | Agricultural land Agricultural research Agricultural soils Agrology Agronomy. Soil science and plant productions Animal, plant and microbial ecology Biochar Biological and medical sciences Biomedical and Life Sciences Cereal crops Charcoal Corn Crop production Crop science Cropping systems Ecology Environmental aspects Fertilizers Field tests Fundamental and applied biological sciences. Psychology General agronomy. Plant production Leaching Life Sciences Microbial biomass Nitrogen Nitrogen content Plant biology Plant Physiology Plant Sciences Plant-soil relationships Regular Article Retention Soil conditioners Soil fertility Soil microorganisms Soil pollution Soil Science & Conservation Soil water Soil-plant relationships. Soil fertility Soil-plant relationships. Soil fertility. Fertilization. Amendments Soils Stover Topsoil Tropical environments Zea mays |
title | Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20dynamics%20following%20field%20application%20of%20biochar%20in%20a%20temperate%20North%20American%20maize-based%20production%20system&rft.jtitle=Plant%20and%20soil&rft.au=G%C3%BCere%C3%B1a,%20David&rft.date=2013-04-01&rft.volume=365&rft.issue=1/2&rft.spage=239&rft.epage=254&rft.pages=239-254&rft.issn=0032-079X&rft.eissn=1573-5036&rft.coden=PLSOA2&rft_id=info:doi/10.1007/s11104-012-1383-4&rft_dat=%3Cgale_proqu%3EA375951727%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356962805&rft_id=info:pmid/&rft_galeid=A375951727&rft_jstor_id=42952347&rfr_iscdi=true |