Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier

In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2012-03, Vol.79, p.158-163
1. Verfasser: Sun, Jianye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue
container_start_page 158
container_title Neurocomputing (Amsterdam)
container_volume 79
creator Sun, Jianye
description In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is defined for the BP training of the classifier. And a hidden node selection scheme is developed for the local coupled feedforward neural network. In addition, we derive a result on the “universal approximation” property of the local coupled feedforward neural network with an arbitrary group of window functions, which can cover the region of training samples. Simulation results show that the general error gradient and the hidden node selection scheme work well.
doi_str_mv 10.1016/j.neucom.2011.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323805176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231211006278</els_id><sourcerecordid>1323805176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-927c44b7bea4115da827ad8cfc8476e64fef1717107109de8b18f2cedacadf6e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEOOXnbNZLe72Ysg4j8oeNFzSJOJTc0mNdla_PZG6lkYGJiZ93jzI-QSWA0MuutNHXCn41hzBlCzoWYwHJEZiJ5XgovumMzYwBcVb4CfkrOcN4xBD3yYkY8lqhRceKfKv8fkpvVIVTB07YzBQEM0SDN61JOLgWa9xhGpjYn6qJWnOu62Hg21iKZM9yoZWrKksgo47WP6oNqrnJ11mM7JiVU-48Vfn5O3h_vXu6dq-fL4fHe7rHTTDFM18F637apfoWoBFkYJ3isjtNWi7TvsWou2pO-BlRoMihUIyzUapZWxHTZzcnXw3ab4ucM8ydFljd6rgHGXJTS8EWwBfVdO28OpTjHnhFZukxtV-pbA5C9buZEHtvKXrWSDLGyL7OYgw_LGV3lNZu0wlAwuFVTSRPe_wQ_oOYd-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323805176</pqid></control><display><type>article</type><title>Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Jianye</creator><creatorcontrib>Sun, Jianye</creatorcontrib><description>In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is defined for the BP training of the classifier. And a hidden node selection scheme is developed for the local coupled feedforward neural network. In addition, we derive a result on the “universal approximation” property of the local coupled feedforward neural network with an arbitrary group of window functions, which can cover the region of training samples. Simulation results show that the general error gradient and the hidden node selection scheme work well.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2011.09.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>BP algorithm ; Classifier ; Gradient ; Hidden node ; LCFNN ; Neural network</subject><ispartof>Neurocomputing (Amsterdam), 2012-03, Vol.79, p.158-163</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-927c44b7bea4115da827ad8cfc8476e64fef1717107109de8b18f2cedacadf6e3</citedby><cites>FETCH-LOGICAL-c339t-927c44b7bea4115da827ad8cfc8476e64fef1717107109de8b18f2cedacadf6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231211006278$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sun, Jianye</creatorcontrib><title>Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier</title><title>Neurocomputing (Amsterdam)</title><description>In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is defined for the BP training of the classifier. And a hidden node selection scheme is developed for the local coupled feedforward neural network. In addition, we derive a result on the “universal approximation” property of the local coupled feedforward neural network with an arbitrary group of window functions, which can cover the region of training samples. Simulation results show that the general error gradient and the hidden node selection scheme work well.</description><subject>BP algorithm</subject><subject>Classifier</subject><subject>Gradient</subject><subject>Hidden node</subject><subject>LCFNN</subject><subject>Neural network</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEOOXnbNZLe72Ysg4j8oeNFzSJOJTc0mNdla_PZG6lkYGJiZ93jzI-QSWA0MuutNHXCn41hzBlCzoWYwHJEZiJ5XgovumMzYwBcVb4CfkrOcN4xBD3yYkY8lqhRceKfKv8fkpvVIVTB07YzBQEM0SDN61JOLgWa9xhGpjYn6qJWnOu62Hg21iKZM9yoZWrKksgo47WP6oNqrnJ11mM7JiVU-48Vfn5O3h_vXu6dq-fL4fHe7rHTTDFM18F637apfoWoBFkYJ3isjtNWi7TvsWou2pO-BlRoMihUIyzUapZWxHTZzcnXw3ab4ucM8ydFljd6rgHGXJTS8EWwBfVdO28OpTjHnhFZukxtV-pbA5C9buZEHtvKXrWSDLGyL7OYgw_LGV3lNZu0wlAwuFVTSRPe_wQ_oOYd-</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Sun, Jianye</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120301</creationdate><title>Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier</title><author>Sun, Jianye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-927c44b7bea4115da827ad8cfc8476e64fef1717107109de8b18f2cedacadf6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>BP algorithm</topic><topic>Classifier</topic><topic>Gradient</topic><topic>Hidden node</topic><topic>LCFNN</topic><topic>Neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianye</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>79</volume><spage>158</spage><epage>163</epage><pages>158-163</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is defined for the BP training of the classifier. And a hidden node selection scheme is developed for the local coupled feedforward neural network. In addition, we derive a result on the “universal approximation” property of the local coupled feedforward neural network with an arbitrary group of window functions, which can cover the region of training samples. Simulation results show that the general error gradient and the hidden node selection scheme work well.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2011.09.019</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2012-03, Vol.79, p.158-163
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1323805176
source Elsevier ScienceDirect Journals
subjects BP algorithm
Classifier
Gradient
Hidden node
LCFNN
Neural network
title Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20algorithm%20and%20hidden%20node%20selection%20scheme%20for%20local%20coupled%20feedforward%20neural%20network%20classifier&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Sun,%20Jianye&rft.date=2012-03-01&rft.volume=79&rft.spage=158&rft.epage=163&rft.pages=158-163&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2011.09.019&rft_dat=%3Cproquest_cross%3E1323805176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323805176&rft_id=info:pmid/&rft_els_id=S0925231211006278&rfr_iscdi=true