Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier
In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2012-03, Vol.79, p.158-163 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | |
container_start_page | 158 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 79 |
creator | Sun, Jianye |
description | In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is defined for the BP training of the classifier. And a hidden node selection scheme is developed for the local coupled feedforward neural network. In addition, we derive a result on the “universal approximation” property of the local coupled feedforward neural network with an arbitrary group of window functions, which can cover the region of training samples. Simulation results show that the general error gradient and the hidden node selection scheme work well. |
doi_str_mv | 10.1016/j.neucom.2011.09.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323805176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231211006278</els_id><sourcerecordid>1323805176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-927c44b7bea4115da827ad8cfc8476e64fef1717107109de8b18f2cedacadf6e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEOOXnbNZLe72Ysg4j8oeNFzSJOJTc0mNdla_PZG6lkYGJiZ93jzI-QSWA0MuutNHXCn41hzBlCzoWYwHJEZiJ5XgovumMzYwBcVb4CfkrOcN4xBD3yYkY8lqhRceKfKv8fkpvVIVTB07YzBQEM0SDN61JOLgWa9xhGpjYn6qJWnOu62Hg21iKZM9yoZWrKksgo47WP6oNqrnJ11mM7JiVU-48Vfn5O3h_vXu6dq-fL4fHe7rHTTDFM18F637apfoWoBFkYJ3isjtNWi7TvsWou2pO-BlRoMihUIyzUapZWxHTZzcnXw3ab4ucM8ydFljd6rgHGXJTS8EWwBfVdO28OpTjHnhFZukxtV-pbA5C9buZEHtvKXrWSDLGyL7OYgw_LGV3lNZu0wlAwuFVTSRPe_wQ_oOYd-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323805176</pqid></control><display><type>article</type><title>Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Jianye</creator><creatorcontrib>Sun, Jianye</creatorcontrib><description>In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is defined for the BP training of the classifier. And a hidden node selection scheme is developed for the local coupled feedforward neural network. In addition, we derive a result on the “universal approximation” property of the local coupled feedforward neural network with an arbitrary group of window functions, which can cover the region of training samples. Simulation results show that the general error gradient and the hidden node selection scheme work well.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2011.09.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>BP algorithm ; Classifier ; Gradient ; Hidden node ; LCFNN ; Neural network</subject><ispartof>Neurocomputing (Amsterdam), 2012-03, Vol.79, p.158-163</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-927c44b7bea4115da827ad8cfc8476e64fef1717107109de8b18f2cedacadf6e3</citedby><cites>FETCH-LOGICAL-c339t-927c44b7bea4115da827ad8cfc8476e64fef1717107109de8b18f2cedacadf6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231211006278$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sun, Jianye</creatorcontrib><title>Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier</title><title>Neurocomputing (Amsterdam)</title><description>In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is defined for the BP training of the classifier. And a hidden node selection scheme is developed for the local coupled feedforward neural network. In addition, we derive a result on the “universal approximation” property of the local coupled feedforward neural network with an arbitrary group of window functions, which can cover the region of training samples. Simulation results show that the general error gradient and the hidden node selection scheme work well.</description><subject>BP algorithm</subject><subject>Classifier</subject><subject>Gradient</subject><subject>Hidden node</subject><subject>LCFNN</subject><subject>Neural network</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEOOXnbNZLe72Ysg4j8oeNFzSJOJTc0mNdla_PZG6lkYGJiZ93jzI-QSWA0MuutNHXCn41hzBlCzoWYwHJEZiJ5XgovumMzYwBcVb4CfkrOcN4xBD3yYkY8lqhRceKfKv8fkpvVIVTB07YzBQEM0SDN61JOLgWa9xhGpjYn6qJWnOu62Hg21iKZM9yoZWrKksgo47WP6oNqrnJ11mM7JiVU-48Vfn5O3h_vXu6dq-fL4fHe7rHTTDFM18F637apfoWoBFkYJ3isjtNWi7TvsWou2pO-BlRoMihUIyzUapZWxHTZzcnXw3ab4ucM8ydFljd6rgHGXJTS8EWwBfVdO28OpTjHnhFZukxtV-pbA5C9buZEHtvKXrWSDLGyL7OYgw_LGV3lNZu0wlAwuFVTSRPe_wQ_oOYd-</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Sun, Jianye</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120301</creationdate><title>Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier</title><author>Sun, Jianye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-927c44b7bea4115da827ad8cfc8476e64fef1717107109de8b18f2cedacadf6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>BP algorithm</topic><topic>Classifier</topic><topic>Gradient</topic><topic>Hidden node</topic><topic>LCFNN</topic><topic>Neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianye</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>79</volume><spage>158</spage><epage>163</epage><pages>158-163</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this paper, a neural classifier based on the newly developed local coupled feedforward neural network, which may improve the convergence of BP learning significantly, is developed. A binary threshold unit is used as the output node of the classifier. A general error gradient of the output node is defined for the BP training of the classifier. And a hidden node selection scheme is developed for the local coupled feedforward neural network. In addition, we derive a result on the “universal approximation” property of the local coupled feedforward neural network with an arbitrary group of window functions, which can cover the region of training samples. Simulation results show that the general error gradient and the hidden node selection scheme work well.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2011.09.019</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2012-03, Vol.79, p.158-163 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323805176 |
source | Elsevier ScienceDirect Journals |
subjects | BP algorithm Classifier Gradient Hidden node LCFNN Neural network |
title | Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20algorithm%20and%20hidden%20node%20selection%20scheme%20for%20local%20coupled%20feedforward%20neural%20network%20classifier&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Sun,%20Jianye&rft.date=2012-03-01&rft.volume=79&rft.spage=158&rft.epage=163&rft.pages=158-163&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2011.09.019&rft_dat=%3Cproquest_cross%3E1323805176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323805176&rft_id=info:pmid/&rft_els_id=S0925231211006278&rfr_iscdi=true |