Accumulation of rice prolamin–GFP fusion proteins induces ER-derived protein bodies in transgenic rice calli

KEY MESSAGE : We showed that rice prolamin polypeptides formed ER-derived PBs in transgenic rice calli, and that this heterologous transgene expression system is suitable for studying the mechanism of rice PB-I formation. Rice prolamins, alcohol-soluble seed storage proteins, accumulate directly wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell reports 2013-03, Vol.32 (3), p.389-399
Hauptverfasser: Shigemitsu, Takanari, Masumura, Takehiro, Morita, Shigeto, Satoh, Shigeru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 3
container_start_page 389
container_title Plant cell reports
container_volume 32
creator Shigemitsu, Takanari
Masumura, Takehiro
Morita, Shigeto
Satoh, Shigeru
description KEY MESSAGE : We showed that rice prolamin polypeptides formed ER-derived PBs in transgenic rice calli, and that this heterologous transgene expression system is suitable for studying the mechanism of rice PB-I formation. Rice prolamins, alcohol-soluble seed storage proteins, accumulate directly within the rough endoplasmic reticulum (ER) lumen, leading to the formation of ER-derived type I protein bodies (PB-Is) in rice seed. Because rice prolamins do not possess a well-known ER retention signal such as K(H)DEL, or a unique sequence for retention in the ER such as a tandem repeat domain of maize and wheat prolamins, the mechanisms of prolamin accumulation in the ER and PB-I formation are poorly understood. In this study, we examined the formation mechanisms of PBs by expressing four types of rice prolamin species fused to green fluorescent protein (GFP) in transgenic rice calli. Each prolamin–GFP fusion protein was stably accumulated in rice calli and formed ER-derived PBs. In contrast, GFP fused with the signal peptide of prolamin was secreted into the intercellular space in rice calli. In addition, each of the four types of prolamin–GFP fusion proteins was co-localized with the ER chaperone binding protein. These results suggest that the mature polypeptide of prolamin is capable of being retained in the ER and induce the formation of PBs in non-seed tissue, and that the rice callus heterologous transgene expression system is useful for studying the mechanisms of rice PB-I formation.
doi_str_mv 10.1007/s00299-012-1372-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323798600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323798600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-2463eecae4c7527f071a6c8a84fdd5988d74d0c4ef46cbb96ade7595c2135db13</originalsourceid><addsrcrecordid>eNqFks1qFjEYhYMo9rN6AW50wI2baP4mP8tS2ioUFLXgLmSSdz5SZjI1mSm48x68w15JM0wr4qKuAjnPOXlfThB6Sck7Soh6XwhhxmBCGaZcMcwfoR0VnGFG-PfHaEcUo1gpKg7Qs1IuCamikk_RAePUMC75DqUj75dxGdwcp9RMfZOjh-YqT4MbY7r59fvs9HPTL2VV6-0MMZUmprB4KM3JFxwgx2sI91rTTSHCSjRzdqnsIUW_ZXo3DPE5etK7ocCLu_MQXZyefDv-gM8_nX08PjrHvqVmxkxIDuAdCK9apnqiqJNeOy36EFqjdVAiEC-gF9J3nZEugGpN6xnlbegoP0Rvt9w6148FymzHWDwMg0swLcVSzrgyWhLyf5RppbXmTFX0zT_o5bTkVBdZKWmEMpJVim6Uz1MpGXp7lePo8k9LiV17s1tvtvZm194sr55Xd8lLN0L447gvqgJsA0qV0h7yX08_kPp6M_Vusm6fY7EXX1n9BaTurUmrHySo0dTwW9ePtiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286947962</pqid></control><display><type>article</type><title>Accumulation of rice prolamin–GFP fusion proteins induces ER-derived protein bodies in transgenic rice calli</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Shigemitsu, Takanari ; Masumura, Takehiro ; Morita, Shigeto ; Satoh, Shigeru</creator><creatorcontrib>Shigemitsu, Takanari ; Masumura, Takehiro ; Morita, Shigeto ; Satoh, Shigeru</creatorcontrib><description>KEY MESSAGE : We showed that rice prolamin polypeptides formed ER-derived PBs in transgenic rice calli, and that this heterologous transgene expression system is suitable for studying the mechanism of rice PB-I formation. Rice prolamins, alcohol-soluble seed storage proteins, accumulate directly within the rough endoplasmic reticulum (ER) lumen, leading to the formation of ER-derived type I protein bodies (PB-Is) in rice seed. Because rice prolamins do not possess a well-known ER retention signal such as K(H)DEL, or a unique sequence for retention in the ER such as a tandem repeat domain of maize and wheat prolamins, the mechanisms of prolamin accumulation in the ER and PB-I formation are poorly understood. In this study, we examined the formation mechanisms of PBs by expressing four types of rice prolamin species fused to green fluorescent protein (GFP) in transgenic rice calli. Each prolamin–GFP fusion protein was stably accumulated in rice calli and formed ER-derived PBs. In contrast, GFP fused with the signal peptide of prolamin was secreted into the intercellular space in rice calli. In addition, each of the four types of prolamin–GFP fusion proteins was co-localized with the ER chaperone binding protein. These results suggest that the mature polypeptide of prolamin is capable of being retained in the ER and induce the formation of PBs in non-seed tissue, and that the rice callus heterologous transgene expression system is useful for studying the mechanisms of rice PB-I formation.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-012-1372-3</identifier><identifier>PMID: 23192363</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>binding proteins ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; corn ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; extracellular space ; Gene Expression ; Gene Expression Regulation, Plant ; green fluorescent protein ; Green Fluorescent Proteins ; Life Sciences ; Original Paper ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; Plant Biochemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants, Genetically Modified ; prolamins ; Prolamins - metabolism ; protein bodies ; Protein Transport ; Recombinant Fusion Proteins ; Retention ; rice ; rough endoplasmic reticulum ; Seeds - genetics ; Seeds - metabolism ; signal peptide ; Tissue Culture Techniques ; Triticum aestivum ; wheat ; Zea mays</subject><ispartof>Plant cell reports, 2013-03, Vol.32 (3), p.389-399</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-2463eecae4c7527f071a6c8a84fdd5988d74d0c4ef46cbb96ade7595c2135db13</citedby><cites>FETCH-LOGICAL-c519t-2463eecae4c7527f071a6c8a84fdd5988d74d0c4ef46cbb96ade7595c2135db13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-012-1372-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-012-1372-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23192363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shigemitsu, Takanari</creatorcontrib><creatorcontrib>Masumura, Takehiro</creatorcontrib><creatorcontrib>Morita, Shigeto</creatorcontrib><creatorcontrib>Satoh, Shigeru</creatorcontrib><title>Accumulation of rice prolamin–GFP fusion proteins induces ER-derived protein bodies in transgenic rice calli</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>KEY MESSAGE : We showed that rice prolamin polypeptides formed ER-derived PBs in transgenic rice calli, and that this heterologous transgene expression system is suitable for studying the mechanism of rice PB-I formation. Rice prolamins, alcohol-soluble seed storage proteins, accumulate directly within the rough endoplasmic reticulum (ER) lumen, leading to the formation of ER-derived type I protein bodies (PB-Is) in rice seed. Because rice prolamins do not possess a well-known ER retention signal such as K(H)DEL, or a unique sequence for retention in the ER such as a tandem repeat domain of maize and wheat prolamins, the mechanisms of prolamin accumulation in the ER and PB-I formation are poorly understood. In this study, we examined the formation mechanisms of PBs by expressing four types of rice prolamin species fused to green fluorescent protein (GFP) in transgenic rice calli. Each prolamin–GFP fusion protein was stably accumulated in rice calli and formed ER-derived PBs. In contrast, GFP fused with the signal peptide of prolamin was secreted into the intercellular space in rice calli. In addition, each of the four types of prolamin–GFP fusion proteins was co-localized with the ER chaperone binding protein. These results suggest that the mature polypeptide of prolamin is capable of being retained in the ER and induce the formation of PBs in non-seed tissue, and that the rice callus heterologous transgene expression system is useful for studying the mechanisms of rice PB-I formation.</description><subject>binding proteins</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>corn</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>extracellular space</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>green fluorescent protein</subject><subject>Green Fluorescent Proteins</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>Plant Biochemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>prolamins</subject><subject>Prolamins - metabolism</subject><subject>protein bodies</subject><subject>Protein Transport</subject><subject>Recombinant Fusion Proteins</subject><subject>Retention</subject><subject>rice</subject><subject>rough endoplasmic reticulum</subject><subject>Seeds - genetics</subject><subject>Seeds - metabolism</subject><subject>signal peptide</subject><subject>Tissue Culture Techniques</subject><subject>Triticum aestivum</subject><subject>wheat</subject><subject>Zea mays</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks1qFjEYhYMo9rN6AW50wI2baP4mP8tS2ioUFLXgLmSSdz5SZjI1mSm48x68w15JM0wr4qKuAjnPOXlfThB6Sck7Soh6XwhhxmBCGaZcMcwfoR0VnGFG-PfHaEcUo1gpKg7Qs1IuCamikk_RAePUMC75DqUj75dxGdwcp9RMfZOjh-YqT4MbY7r59fvs9HPTL2VV6-0MMZUmprB4KM3JFxwgx2sI91rTTSHCSjRzdqnsIUW_ZXo3DPE5etK7ocCLu_MQXZyefDv-gM8_nX08PjrHvqVmxkxIDuAdCK9apnqiqJNeOy36EFqjdVAiEC-gF9J3nZEugGpN6xnlbegoP0Rvt9w6148FymzHWDwMg0swLcVSzrgyWhLyf5RppbXmTFX0zT_o5bTkVBdZKWmEMpJVim6Uz1MpGXp7lePo8k9LiV17s1tvtvZm194sr55Xd8lLN0L447gvqgJsA0qV0h7yX08_kPp6M_Vusm6fY7EXX1n9BaTurUmrHySo0dTwW9ePtiY</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Shigemitsu, Takanari</creator><creator>Masumura, Takehiro</creator><creator>Morita, Shigeto</creator><creator>Satoh, Shigeru</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130301</creationdate><title>Accumulation of rice prolamin–GFP fusion proteins induces ER-derived protein bodies in transgenic rice calli</title><author>Shigemitsu, Takanari ; Masumura, Takehiro ; Morita, Shigeto ; Satoh, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-2463eecae4c7527f071a6c8a84fdd5988d74d0c4ef46cbb96ade7595c2135db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>binding proteins</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>corn</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>extracellular space</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>green fluorescent protein</topic><topic>Green Fluorescent Proteins</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>Plant Biochemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>prolamins</topic><topic>Prolamins - metabolism</topic><topic>protein bodies</topic><topic>Protein Transport</topic><topic>Recombinant Fusion Proteins</topic><topic>Retention</topic><topic>rice</topic><topic>rough endoplasmic reticulum</topic><topic>Seeds - genetics</topic><topic>Seeds - metabolism</topic><topic>signal peptide</topic><topic>Tissue Culture Techniques</topic><topic>Triticum aestivum</topic><topic>wheat</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shigemitsu, Takanari</creatorcontrib><creatorcontrib>Masumura, Takehiro</creatorcontrib><creatorcontrib>Morita, Shigeto</creatorcontrib><creatorcontrib>Satoh, Shigeru</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shigemitsu, Takanari</au><au>Masumura, Takehiro</au><au>Morita, Shigeto</au><au>Satoh, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accumulation of rice prolamin–GFP fusion proteins induces ER-derived protein bodies in transgenic rice calli</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>32</volume><issue>3</issue><spage>389</spage><epage>399</epage><pages>389-399</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>KEY MESSAGE : We showed that rice prolamin polypeptides formed ER-derived PBs in transgenic rice calli, and that this heterologous transgene expression system is suitable for studying the mechanism of rice PB-I formation. Rice prolamins, alcohol-soluble seed storage proteins, accumulate directly within the rough endoplasmic reticulum (ER) lumen, leading to the formation of ER-derived type I protein bodies (PB-Is) in rice seed. Because rice prolamins do not possess a well-known ER retention signal such as K(H)DEL, or a unique sequence for retention in the ER such as a tandem repeat domain of maize and wheat prolamins, the mechanisms of prolamin accumulation in the ER and PB-I formation are poorly understood. In this study, we examined the formation mechanisms of PBs by expressing four types of rice prolamin species fused to green fluorescent protein (GFP) in transgenic rice calli. Each prolamin–GFP fusion protein was stably accumulated in rice calli and formed ER-derived PBs. In contrast, GFP fused with the signal peptide of prolamin was secreted into the intercellular space in rice calli. In addition, each of the four types of prolamin–GFP fusion proteins was co-localized with the ER chaperone binding protein. These results suggest that the mature polypeptide of prolamin is capable of being retained in the ER and induce the formation of PBs in non-seed tissue, and that the rice callus heterologous transgene expression system is useful for studying the mechanisms of rice PB-I formation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23192363</pmid><doi>10.1007/s00299-012-1372-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2013-03, Vol.32 (3), p.389-399
issn 0721-7714
1432-203X
language eng
recordid cdi_proquest_miscellaneous_1323798600
source MEDLINE; Springer Nature - Complete Springer Journals
subjects binding proteins
Biomedical and Life Sciences
Biotechnology
Cell Biology
corn
Endoplasmic Reticulum - genetics
Endoplasmic Reticulum - metabolism
extracellular space
Gene Expression
Gene Expression Regulation, Plant
green fluorescent protein
Green Fluorescent Proteins
Life Sciences
Original Paper
Oryza - genetics
Oryza - metabolism
Oryza sativa
Plant Biochemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Plants, Genetically Modified
prolamins
Prolamins - metabolism
protein bodies
Protein Transport
Recombinant Fusion Proteins
Retention
rice
rough endoplasmic reticulum
Seeds - genetics
Seeds - metabolism
signal peptide
Tissue Culture Techniques
Triticum aestivum
wheat
Zea mays
title Accumulation of rice prolamin–GFP fusion proteins induces ER-derived protein bodies in transgenic rice calli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accumulation%20of%20rice%20prolamin%E2%80%93GFP%20fusion%20proteins%20induces%20ER-derived%20protein%20bodies%20in%20transgenic%20rice%20calli&rft.jtitle=Plant%20cell%20reports&rft.au=Shigemitsu,%20Takanari&rft.date=2013-03-01&rft.volume=32&rft.issue=3&rft.spage=389&rft.epage=399&rft.pages=389-399&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-012-1372-3&rft_dat=%3Cproquest_cross%3E1323798600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286947962&rft_id=info:pmid/23192363&rfr_iscdi=true