Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs

The cast shadows in an image provide important information about illumination and geometry. In this paper, we utilize this information in a novel framework in order to jointly recover the illumination environment, a set of geometry parameters, and an estimate of the cast shadows in the scene given a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-02, Vol.35 (2), p.437-449
Hauptverfasser: Panagopoulos, A., Chaohui Wang, Samaras, D., Paragios, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 2
container_start_page 437
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 35
creator Panagopoulos, A.
Chaohui Wang
Samaras, D.
Paragios, N.
description The cast shadows in an image provide important information about illumination and geometry. In this paper, we utilize this information in a novel framework in order to jointly recover the illumination environment, a set of geometry parameters, and an estimate of the cast shadows in the scene given a single image and coarse initial 3D geometry. We model the interaction of illumination and geometry in the scene and associate it with image evidence for cast shadows using a higher order Markov Random Field (MRF) illumination model, while we also introduce a method to obtain approximate image evidence for cast shadows. Capturing the interaction between light sources and geometry in the proposed graphical model necessitates higher order cliques and continuous-valued variables, which make inference challenging. Taking advantage of domain knowledge, we provide a two-stage minimization technique for the MRF energy of our model. We evaluate our method in different datasets, both synthetic and real. Our model is robust to rough knowledge of geometry and inaccurate initial shadow estimates, allowing a generic coarse 3D model to represent a whole class of objects for the task of illumination estimation, or the estimation of geometry parameters to refine our initial knowledge of scene geometry, simultaneously with illumination estimation.
doi_str_mv 10.1109/TPAMI.2012.110
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323278018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6200288</ieee_id><sourcerecordid>2850288401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-ac37e5b25a5516e0b7adf82829a4015c76d61d92f100bf89a0147cf88e8144633</originalsourceid><addsrcrecordid>eNqF0c9r2zAUB3AxNtas23WXwTCMwQp19p5-2PIxhK0JZKzQ9iwUW25UbDmT7I3895PrNINdqouQ9NHjPb6EvEeYI0Lx9fZ68WM9p4B0PL8gMyxYkTLBipdkBpjRVEoqz8ibEB4AkAtgr8kZpUIKBJyR6xvbDk2vnemGkCx16JObna66P-EyWTfN0Fqne9u5RLsquTJda3p_SNauNt640iR3wbr7ZHXYG3_v9X4X3pJXtW6CeXfcz8nd92-3y1W6-Xm1Xi42ack59KkuWW7ElgotBGYGtrmu6tgpLTQHFGWeVRlWBa0RYFvLQsfe87KW0kjkPGPsnFxMdXe6UXtvW-0PqtNWrRYbNd4BSCFEgb8x2i-T3fvu12BCr1obStM009gKGWU0l4DyeUoly7jgfKSf_qMP3eBdHDoqzuLKHgvOJ1X6LgRv6lOzCGqMUD1GqMYIx3P88PFYdti2pjrxp8wi-HwEOpS6qb12pQ3_XI45SKTRfZicNcacnjMKQKVkfwHe7qkl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1243333618</pqid></control><display><type>article</type><title>Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs</title><source>IEEE Electronic Library (IEL)</source><creator>Panagopoulos, A. ; Chaohui Wang ; Samaras, D. ; Paragios, N.</creator><creatorcontrib>Panagopoulos, A. ; Chaohui Wang ; Samaras, D. ; Paragios, N.</creatorcontrib><description>The cast shadows in an image provide important information about illumination and geometry. In this paper, we utilize this information in a novel framework in order to jointly recover the illumination environment, a set of geometry parameters, and an estimate of the cast shadows in the scene given a single image and coarse initial 3D geometry. We model the interaction of illumination and geometry in the scene and associate it with image evidence for cast shadows using a higher order Markov Random Field (MRF) illumination model, while we also introduce a method to obtain approximate image evidence for cast shadows. Capturing the interaction between light sources and geometry in the proposed graphical model necessitates higher order cliques and continuous-valued variables, which make inference challenging. Taking advantage of domain knowledge, we provide a two-stage minimization technique for the MRF energy of our model. We evaluate our method in different datasets, both synthetic and real. Our model is robust to rough knowledge of geometry and inaccurate initial shadow estimates, allowing a generic coarse 3D model to represent a whole class of objects for the task of illumination estimation, or the estimation of geometry parameters to refine our initial knowledge of scene geometry, simultaneously with illumination estimation.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2012.110</identifier><identifier>PMID: 22585101</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Art education ; Artificial Intelligence ; Computer Science ; Computer science; control theory; systems ; Estimates ; Estimation ; Exact sciences and technology ; Geometry ; Illumination ; Image edge detection ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; image models ; Imaging, Three-Dimensional - methods ; Inference ; Information retrieval. Graph ; Light sources ; Lighting ; Lighting - methods ; Magnetorheological fluids ; Markov random fields ; Masks ; Mathematical models ; Medical Imaging ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; photometry ; Preventive medicine ; Reproducibility of Results ; Sensitivity and Specificity ; shading ; Shadows ; Solid modeling ; Teaching methods ; Theoretical computing ; Three dimensional ; Three dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-02, Vol.35 (2), p.437-449</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-ac37e5b25a5516e0b7adf82829a4015c76d61d92f100bf89a0147cf88e8144633</citedby><cites>FETCH-LOGICAL-c440t-ac37e5b25a5516e0b7adf82829a4015c76d61d92f100bf89a0147cf88e8144633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6200288$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6200288$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27170812$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22585101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00855591$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Panagopoulos, A.</creatorcontrib><creatorcontrib>Chaohui Wang</creatorcontrib><creatorcontrib>Samaras, D.</creatorcontrib><creatorcontrib>Paragios, N.</creatorcontrib><title>Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The cast shadows in an image provide important information about illumination and geometry. In this paper, we utilize this information in a novel framework in order to jointly recover the illumination environment, a set of geometry parameters, and an estimate of the cast shadows in the scene given a single image and coarse initial 3D geometry. We model the interaction of illumination and geometry in the scene and associate it with image evidence for cast shadows using a higher order Markov Random Field (MRF) illumination model, while we also introduce a method to obtain approximate image evidence for cast shadows. Capturing the interaction between light sources and geometry in the proposed graphical model necessitates higher order cliques and continuous-valued variables, which make inference challenging. Taking advantage of domain knowledge, we provide a two-stage minimization technique for the MRF energy of our model. We evaluate our method in different datasets, both synthetic and real. Our model is robust to rough knowledge of geometry and inaccurate initial shadow estimates, allowing a generic coarse 3D model to represent a whole class of objects for the task of illumination estimation, or the estimation of geometry parameters to refine our initial knowledge of scene geometry, simultaneously with illumination estimation.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Art education</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Illumination</subject><subject>Image edge detection</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>image models</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Inference</subject><subject>Information retrieval. Graph</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Lighting - methods</subject><subject>Magnetorheological fluids</subject><subject>Markov random fields</subject><subject>Masks</subject><subject>Mathematical models</subject><subject>Medical Imaging</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>photometry</subject><subject>Preventive medicine</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>shading</subject><subject>Shadows</subject><subject>Solid modeling</subject><subject>Teaching methods</subject><subject>Theoretical computing</subject><subject>Three dimensional</subject><subject>Three dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9r2zAUB3AxNtas23WXwTCMwQp19p5-2PIxhK0JZKzQ9iwUW25UbDmT7I3895PrNINdqouQ9NHjPb6EvEeYI0Lx9fZ68WM9p4B0PL8gMyxYkTLBipdkBpjRVEoqz8ibEB4AkAtgr8kZpUIKBJyR6xvbDk2vnemGkCx16JObna66P-EyWTfN0Fqne9u5RLsquTJda3p_SNauNt640iR3wbr7ZHXYG3_v9X4X3pJXtW6CeXfcz8nd92-3y1W6-Xm1Xi42ack59KkuWW7ElgotBGYGtrmu6tgpLTQHFGWeVRlWBa0RYFvLQsfe87KW0kjkPGPsnFxMdXe6UXtvW-0PqtNWrRYbNd4BSCFEgb8x2i-T3fvu12BCr1obStM009gKGWU0l4DyeUoly7jgfKSf_qMP3eBdHDoqzuLKHgvOJ1X6LgRv6lOzCGqMUD1GqMYIx3P88PFYdti2pjrxp8wi-HwEOpS6qb12pQ3_XI45SKTRfZicNcacnjMKQKVkfwHe7qkl</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Panagopoulos, A.</creator><creator>Chaohui Wang</creator><creator>Samaras, D.</creator><creator>Paragios, N.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20130201</creationdate><title>Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs</title><author>Panagopoulos, A. ; Chaohui Wang ; Samaras, D. ; Paragios, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-ac37e5b25a5516e0b7adf82829a4015c76d61d92f100bf89a0147cf88e8144633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Art education</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Illumination</topic><topic>Image edge detection</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>image models</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Inference</topic><topic>Information retrieval. Graph</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Lighting - methods</topic><topic>Magnetorheological fluids</topic><topic>Markov random fields</topic><topic>Masks</topic><topic>Mathematical models</topic><topic>Medical Imaging</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>photometry</topic><topic>Preventive medicine</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>shading</topic><topic>Shadows</topic><topic>Solid modeling</topic><topic>Teaching methods</topic><topic>Theoretical computing</topic><topic>Three dimensional</topic><topic>Three dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panagopoulos, A.</creatorcontrib><creatorcontrib>Chaohui Wang</creatorcontrib><creatorcontrib>Samaras, D.</creatorcontrib><creatorcontrib>Paragios, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panagopoulos, A.</au><au>Chaohui Wang</au><au>Samaras, D.</au><au>Paragios, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>35</volume><issue>2</issue><spage>437</spage><epage>449</epage><pages>437-449</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>The cast shadows in an image provide important information about illumination and geometry. In this paper, we utilize this information in a novel framework in order to jointly recover the illumination environment, a set of geometry parameters, and an estimate of the cast shadows in the scene given a single image and coarse initial 3D geometry. We model the interaction of illumination and geometry in the scene and associate it with image evidence for cast shadows using a higher order Markov Random Field (MRF) illumination model, while we also introduce a method to obtain approximate image evidence for cast shadows. Capturing the interaction between light sources and geometry in the proposed graphical model necessitates higher order cliques and continuous-valued variables, which make inference challenging. Taking advantage of domain knowledge, we provide a two-stage minimization technique for the MRF energy of our model. We evaluate our method in different datasets, both synthetic and real. Our model is robust to rough knowledge of geometry and inaccurate initial shadow estimates, allowing a generic coarse 3D model to represent a whole class of objects for the task of illumination estimation, or the estimation of geometry parameters to refine our initial knowledge of scene geometry, simultaneously with illumination estimation.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22585101</pmid><doi>10.1109/TPAMI.2012.110</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2013-02, Vol.35 (2), p.437-449
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_1323278018
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Art education
Artificial Intelligence
Computer Science
Computer science
control theory
systems
Estimates
Estimation
Exact sciences and technology
Geometry
Illumination
Image edge detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
image models
Imaging, Three-Dimensional - methods
Inference
Information retrieval. Graph
Light sources
Lighting
Lighting - methods
Magnetorheological fluids
Markov random fields
Masks
Mathematical models
Medical Imaging
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
photometry
Preventive medicine
Reproducibility of Results
Sensitivity and Specificity
shading
Shadows
Solid modeling
Teaching methods
Theoretical computing
Three dimensional
Three dimensional displays
title Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Cast%20Shadows,%20Illumination%20and%20Geometry%20Inference%20Using%20Hypergraphs&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Panagopoulos,%20A.&rft.date=2013-02-01&rft.volume=35&rft.issue=2&rft.spage=437&rft.epage=449&rft.pages=437-449&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2012.110&rft_dat=%3Cproquest_RIE%3E2850288401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1243333618&rft_id=info:pmid/22585101&rft_ieee_id=6200288&rfr_iscdi=true