Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods

[Display omitted] ► Geothermal systems is challenging in highly heterogeneous porous media. ► Standard schemes suffer time-step restrictions or excessive numerical diffusion. ► Exponential Rosenbrock–Euler method and Rosenbrock-type methods lead to efficient tools. ► No need to solve nonlinear algeb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2013-03, Vol.53, p.250-262
Hauptverfasser: Tambue, A., Berre, I., Nordbotten, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue
container_start_page 250
container_title Advances in water resources
container_volume 53
creator Tambue, A.
Berre, I.
Nordbotten, J.M.
description [Display omitted] ► Geothermal systems is challenging in highly heterogeneous porous media. ► Standard schemes suffer time-step restrictions or excessive numerical diffusion. ► Exponential Rosenbrock–Euler method and Rosenbrock-type methods lead to efficient tools. ► No need to solve nonlinear algebraic equations as with standard implicit methods. Simulation of geothermal systems is challenging due to coupled physical processes in highly heterogeneous media. Combining the exponential Rosenbrock–Euler method and Rosenbrock-type methods with control-volume (two-point flux approximation) space discretizations leads to efficient numerical techniques for simulating geothermal systems. In terms of efficiency and accuracy, the exponential Rosenbrock–Euler time integrator has advantages over standard time-discretization schemes, which suffer from time-step restrictions or excessive numerical diffusion when advection processes are dominating. Based on linearization of the equation at each time step, we make use of matrix exponentials of the Jacobian from the spatial discretization, which provide the exact solution in time for the linearized equations. This is at the expense of computing the matrix exponentials of the stiff Jacobian matrix, together with propagating a linearized system. However, using a Krylov subspace or Léja points techniques make these computations efficient. The Rosenbrock-type methods use the appropriate rational functions of the Jacobian of the ODEs resulting from the spatial discretization. The parameters in these schemes are found in consistency with the required order of convergence in time. As a result, these schemes are A-stable and only a few linear systems are solved at each time step. The efficiency of the methods compared to standard time-discretization techniques are demonstrated in numerical examples.
doi_str_mv 10.1016/j.advwatres.2012.12.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323262096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170812003144</els_id><sourcerecordid>1323262096</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-38b77734af1e937abf0c424720d73a3601bf11d6f24817acace27a9dcdcd769c3</originalsourceid><addsrcrecordid>eNqFUU2LFDEQDaLguPobzEXw0mM-ejrdx2UZdWFBED2H6nRlJ2N3p01l1t2bv8H9h_4SM86yeJMqKCjee8Wrx9hrKdZSyObdfg3DzQ_ICWmthFTr0kLUT9hKtkZVXbMxT9lKaNFV0oj2OXtBtBdCtLVRK_Zr631wAefMKUyHEXKIM4-eX2PMO0wTjHxJ0SEREg8z32HGFK9xxnggvsR0HBMOAXgPhAMv9ELkeLvEuciGIvA5Es59Ufn2--f99jBi4jAP_6yrfLdgUcm7ONBL9szDSPjqYZ6xr--3Xy4-VlefPlxenF9VUG9ErnTbG2N0DV5ipw30XrhaFVNiMBp0I2TvpRwar-pWGnDgUBnoBlfKNJ3TZ-ztSbf4-35AynYK5HAc4a83K7XSqlGiawrUnKAuRaKE3i4pTJDurBT2mILd28cU7DEFW7qkUJhvHo4AORh9gtkFeqQrI_VGi03BnZ9wWBzfBEyWjqm48tiELtshhv_e-gNhfKeC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323262096</pqid></control><display><type>article</type><title>Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tambue, A. ; Berre, I. ; Nordbotten, J.M.</creator><creatorcontrib>Tambue, A. ; Berre, I. ; Nordbotten, J.M.</creatorcontrib><description>[Display omitted] ► Geothermal systems is challenging in highly heterogeneous porous media. ► Standard schemes suffer time-step restrictions or excessive numerical diffusion. ► Exponential Rosenbrock–Euler method and Rosenbrock-type methods lead to efficient tools. ► No need to solve nonlinear algebraic equations as with standard implicit methods. Simulation of geothermal systems is challenging due to coupled physical processes in highly heterogeneous media. Combining the exponential Rosenbrock–Euler method and Rosenbrock-type methods with control-volume (two-point flux approximation) space discretizations leads to efficient numerical techniques for simulating geothermal systems. In terms of efficiency and accuracy, the exponential Rosenbrock–Euler time integrator has advantages over standard time-discretization schemes, which suffer from time-step restrictions or excessive numerical diffusion when advection processes are dominating. Based on linearization of the equation at each time step, we make use of matrix exponentials of the Jacobian from the spatial discretization, which provide the exact solution in time for the linearized equations. This is at the expense of computing the matrix exponentials of the stiff Jacobian matrix, together with propagating a linearized system. However, using a Krylov subspace or Léja points techniques make these computations efficient. The Rosenbrock-type methods use the appropriate rational functions of the Jacobian of the ODEs resulting from the spatial discretization. The parameters in these schemes are found in consistency with the required order of convergence in time. As a result, these schemes are A-stable and only a few linear systems are solved at each time step. The efficiency of the methods compared to standard time-discretization techniques are demonstrated in numerical examples.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2012.12.004</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer simulation ; Discretization ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Exact solutions ; Exponential integration ; Fast time integrators ; Geothermal ; Geothermal systems ; Geothermics ; Hydrogeology ; Hydrology. Hydrogeology ; Jacobians ; Krylov subspace ; Léja points ; Mathematical analysis ; Porous media ; Rosenbrock-type methods</subject><ispartof>Advances in water resources, 2013-03, Vol.53, p.250-262</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-38b77734af1e937abf0c424720d73a3601bf11d6f24817acace27a9dcdcd769c3</citedby><cites>FETCH-LOGICAL-a450t-38b77734af1e937abf0c424720d73a3601bf11d6f24817acace27a9dcdcd769c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advwatres.2012.12.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27135305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tambue, A.</creatorcontrib><creatorcontrib>Berre, I.</creatorcontrib><creatorcontrib>Nordbotten, J.M.</creatorcontrib><title>Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods</title><title>Advances in water resources</title><description>[Display omitted] ► Geothermal systems is challenging in highly heterogeneous porous media. ► Standard schemes suffer time-step restrictions or excessive numerical diffusion. ► Exponential Rosenbrock–Euler method and Rosenbrock-type methods lead to efficient tools. ► No need to solve nonlinear algebraic equations as with standard implicit methods. Simulation of geothermal systems is challenging due to coupled physical processes in highly heterogeneous media. Combining the exponential Rosenbrock–Euler method and Rosenbrock-type methods with control-volume (two-point flux approximation) space discretizations leads to efficient numerical techniques for simulating geothermal systems. In terms of efficiency and accuracy, the exponential Rosenbrock–Euler time integrator has advantages over standard time-discretization schemes, which suffer from time-step restrictions or excessive numerical diffusion when advection processes are dominating. Based on linearization of the equation at each time step, we make use of matrix exponentials of the Jacobian from the spatial discretization, which provide the exact solution in time for the linearized equations. This is at the expense of computing the matrix exponentials of the stiff Jacobian matrix, together with propagating a linearized system. However, using a Krylov subspace or Léja points techniques make these computations efficient. The Rosenbrock-type methods use the appropriate rational functions of the Jacobian of the ODEs resulting from the spatial discretization. The parameters in these schemes are found in consistency with the required order of convergence in time. As a result, these schemes are A-stable and only a few linear systems are solved at each time step. The efficiency of the methods compared to standard time-discretization techniques are demonstrated in numerical examples.</description><subject>Computer simulation</subject><subject>Discretization</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Exponential integration</subject><subject>Fast time integrators</subject><subject>Geothermal</subject><subject>Geothermal systems</subject><subject>Geothermics</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Jacobians</subject><subject>Krylov subspace</subject><subject>Léja points</subject><subject>Mathematical analysis</subject><subject>Porous media</subject><subject>Rosenbrock-type methods</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUU2LFDEQDaLguPobzEXw0mM-ejrdx2UZdWFBED2H6nRlJ2N3p01l1t2bv8H9h_4SM86yeJMqKCjee8Wrx9hrKdZSyObdfg3DzQ_ICWmthFTr0kLUT9hKtkZVXbMxT9lKaNFV0oj2OXtBtBdCtLVRK_Zr631wAefMKUyHEXKIM4-eX2PMO0wTjHxJ0SEREg8z32HGFK9xxnggvsR0HBMOAXgPhAMv9ELkeLvEuciGIvA5Es59Ufn2--f99jBi4jAP_6yrfLdgUcm7ONBL9szDSPjqYZ6xr--3Xy4-VlefPlxenF9VUG9ErnTbG2N0DV5ipw30XrhaFVNiMBp0I2TvpRwar-pWGnDgUBnoBlfKNJ3TZ-ztSbf4-35AynYK5HAc4a83K7XSqlGiawrUnKAuRaKE3i4pTJDurBT2mILd28cU7DEFW7qkUJhvHo4AORh9gtkFeqQrI_VGi03BnZ9wWBzfBEyWjqm48tiELtshhv_e-gNhfKeC</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Tambue, A.</creator><creator>Berre, I.</creator><creator>Nordbotten, J.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130301</creationdate><title>Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods</title><author>Tambue, A. ; Berre, I. ; Nordbotten, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-38b77734af1e937abf0c424720d73a3601bf11d6f24817acace27a9dcdcd769c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Discretization</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Exponential integration</topic><topic>Fast time integrators</topic><topic>Geothermal</topic><topic>Geothermal systems</topic><topic>Geothermics</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Jacobians</topic><topic>Krylov subspace</topic><topic>Léja points</topic><topic>Mathematical analysis</topic><topic>Porous media</topic><topic>Rosenbrock-type methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tambue, A.</creatorcontrib><creatorcontrib>Berre, I.</creatorcontrib><creatorcontrib>Nordbotten, J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tambue, A.</au><au>Berre, I.</au><au>Nordbotten, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods</atitle><jtitle>Advances in water resources</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>53</volume><spage>250</spage><epage>262</epage><pages>250-262</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>[Display omitted] ► Geothermal systems is challenging in highly heterogeneous porous media. ► Standard schemes suffer time-step restrictions or excessive numerical diffusion. ► Exponential Rosenbrock–Euler method and Rosenbrock-type methods lead to efficient tools. ► No need to solve nonlinear algebraic equations as with standard implicit methods. Simulation of geothermal systems is challenging due to coupled physical processes in highly heterogeneous media. Combining the exponential Rosenbrock–Euler method and Rosenbrock-type methods with control-volume (two-point flux approximation) space discretizations leads to efficient numerical techniques for simulating geothermal systems. In terms of efficiency and accuracy, the exponential Rosenbrock–Euler time integrator has advantages over standard time-discretization schemes, which suffer from time-step restrictions or excessive numerical diffusion when advection processes are dominating. Based on linearization of the equation at each time step, we make use of matrix exponentials of the Jacobian from the spatial discretization, which provide the exact solution in time for the linearized equations. This is at the expense of computing the matrix exponentials of the stiff Jacobian matrix, together with propagating a linearized system. However, using a Krylov subspace or Léja points techniques make these computations efficient. The Rosenbrock-type methods use the appropriate rational functions of the Jacobian of the ODEs resulting from the spatial discretization. The parameters in these schemes are found in consistency with the required order of convergence in time. As a result, these schemes are A-stable and only a few linear systems are solved at each time step. The efficiency of the methods compared to standard time-discretization techniques are demonstrated in numerical examples.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2012.12.004</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2013-03, Vol.53, p.250-262
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_miscellaneous_1323262096
source ScienceDirect Journals (5 years ago - present)
subjects Computer simulation
Discretization
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Exact solutions
Exponential integration
Fast time integrators
Geothermal
Geothermal systems
Geothermics
Hydrogeology
Hydrology. Hydrogeology
Jacobians
Krylov subspace
Léja points
Mathematical analysis
Porous media
Rosenbrock-type methods
title Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20simulation%20of%20geothermal%20processes%20in%20heterogeneous%20porous%20media%20based%20on%20the%20exponential%20Rosenbrock%E2%80%93Euler%20and%20Rosenbrock-type%20methods&rft.jtitle=Advances%20in%20water%20resources&rft.au=Tambue,%20A.&rft.date=2013-03-01&rft.volume=53&rft.spage=250&rft.epage=262&rft.pages=250-262&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2012.12.004&rft_dat=%3Cproquest_cross%3E1323262096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323262096&rft_id=info:pmid/&rft_els_id=S0309170812003144&rfr_iscdi=true