Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes

It is believed that the crucial step towards preparation of electrical conductive polymer-carbon nanotube (CNT) composites is dispersing CNTs with a high length-to-diameter aspect ratio in a well-aligned manner. However, this process is extremely challenging when dealing with long and entangled CNTs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2013-01, Vol.5 (7), p.2870-2874
Hauptverfasser: Sun, Gengzhi, Zheng, Lianxi, An, Jia, Pan, Yongzheng, Zhou, Jinyuan, Zhan, Zhaoyao, Pang, John H L, Chua, Chee Kai, Leong, Kah Fai, Li, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is believed that the crucial step towards preparation of electrical conductive polymer-carbon nanotube (CNT) composites is dispersing CNTs with a high length-to-diameter aspect ratio in a well-aligned manner. However, this process is extremely challenging when dealing with long and entangled CNTs. Here in this study, a new approach is demonstrated to fabricate conductive polymer-CNT composite fibers without involving any dispersion process. Well-aligned CNT films were firstly drawn from CNT arrays, and then directly coated on polycaprolactone fibers to form polymer-CNT composite fibers. The conductivity of these composite fibers can be as high as 285 S m(-1) with only 2.5 wt% CNT loading, and reach 1549 S m(-1) when CNT loading is 13.4 wt%. As-prepared composite fibers also exhibit 82% retention of conductivity at a strain of 7%, and have improved mechanical properties.
ISSN:2040-3364
2040-3372
DOI:10.1039/c3nr34208e