Modeling and dynamic characteristics of spinning Rayleigh beams

This paper derives linear and nonlinear models of spinning Rayleigh beams and investigates dynamic characteristics of downward vertical spinning Rayleigh beams with six different sets of boundary conditions. The derivations show that an important linear term due to centrifugal forces is missing in m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical sciences 2013-03, Vol.68, p.291-303
Hauptverfasser: Frank Pai, P., Qian, Xin, Du, Xingwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue
container_start_page 291
container_title International journal of mechanical sciences
container_volume 68
creator Frank Pai, P.
Qian, Xin
Du, Xingwen
description This paper derives linear and nonlinear models of spinning Rayleigh beams and investigates dynamic characteristics of downward vertical spinning Rayleigh beams with six different sets of boundary conditions. The derivations show that an important linear term due to centrifugal forces is missing in many reports in the literature because of inconsistent use of nonlinear terms in the derivation, but this term is indispensible for correct modeling and analysis of spinning beams. The influences of rotary inertia, spinning speed, Coriolis and centrifugal forces, slenderness, and gravity on forward and backward whirling speeds, whirling mode shapes, and critical speeds are investigated in detail using analytical and finite-element methods. Numerical results show that each forward whirling speed increases up to its critical speed and the corresponding backward whirling speed decreases when the spinning speed increases. Each forward whirling speed is higher than the corresponding backward whirling speed, and the difference increases when the spinning speed and the mode number increase and the slenderness ratio decreases. For a spinning Rayleigh beam with any of the six different sets of boundary conditions, there are infinite (instead of finite, as some reports said) forward critical speeds and infinite backward critical speeds. Moreover, gravity increases the forward and backward whirling speeds of a downward spinning uniform beam, but the increase is significant only if it is a very long thin beam. ► Present linear and nonlinear models of spinning Rayleigh beams. ► Point out an important centrifugal term often missing in the literature. ► Investigate whirling and critical speeds under different boundary conditions. ► Investigate influences of rotary inertia, Coriolis and centrifugal forces, and gravity. ► Show that the missing term explains some inconsistent results in the literature.
doi_str_mv 10.1016/j.ijmecsci.2013.01.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323257949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740313000374</els_id><sourcerecordid>1323257949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-adc094879ec6a898ad1c59aa34c55ff94777bd9e6a97e4450af4d85fa78bcdf23</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QWbpZsa8ZjJZqRRfUBFE1-E2uWkzzKMmo9B_75Tq2tXdfOdw7kfIJaMFo6y6borQdGiTDQWnTBSUFZTrIzJjtdI5ZxU_JjNKOc2VpOKUnKXUUMoULcWM3LwMDtvQrzPoXeZ2PXTBZnYDEeyIMaQx2JQNPkvb0Pd77g12LYb1JlshdOmcnHhoE1783jn5eLh_Xzzly9fH58XdMrdClmMOzlItpz1oK6h1DY7ZUgMIacvSey2VUiunsQKtUMqSgpeuLj2oemWd52JOrg692zh8fmEaTReSxbaFHoevZJjggpdKSz2h1QG1cUgpojfbGDqIO8Oo2RszjfkzZvbGDGVmMjYFbw9BnB75DhjNRGBv0YWIdjRuCP9V_ABXRXi3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323257949</pqid></control><display><type>article</type><title>Modeling and dynamic characteristics of spinning Rayleigh beams</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Frank Pai, P. ; Qian, Xin ; Du, Xingwen</creator><creatorcontrib>Frank Pai, P. ; Qian, Xin ; Du, Xingwen</creatorcontrib><description>This paper derives linear and nonlinear models of spinning Rayleigh beams and investigates dynamic characteristics of downward vertical spinning Rayleigh beams with six different sets of boundary conditions. The derivations show that an important linear term due to centrifugal forces is missing in many reports in the literature because of inconsistent use of nonlinear terms in the derivation, but this term is indispensible for correct modeling and analysis of spinning beams. The influences of rotary inertia, spinning speed, Coriolis and centrifugal forces, slenderness, and gravity on forward and backward whirling speeds, whirling mode shapes, and critical speeds are investigated in detail using analytical and finite-element methods. Numerical results show that each forward whirling speed increases up to its critical speed and the corresponding backward whirling speed decreases when the spinning speed increases. Each forward whirling speed is higher than the corresponding backward whirling speed, and the difference increases when the spinning speed and the mode number increase and the slenderness ratio decreases. For a spinning Rayleigh beam with any of the six different sets of boundary conditions, there are infinite (instead of finite, as some reports said) forward critical speeds and infinite backward critical speeds. Moreover, gravity increases the forward and backward whirling speeds of a downward spinning uniform beam, but the increase is significant only if it is a very long thin beam. ► Present linear and nonlinear models of spinning Rayleigh beams. ► Point out an important centrifugal term often missing in the literature. ► Investigate whirling and critical speeds under different boundary conditions. ► Investigate influences of rotary inertia, Coriolis and centrifugal forces, and gravity. ► Show that the missing term explains some inconsistent results in the literature.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2013.01.029</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beams (radiation) ; Boundary conditions ; Centrifugal force ; Coriolis and centrifugal forces ; Critical speeds ; Derivation ; Gravitation ; Gravitational effect ; Mathematical analysis ; Nonlinearity ; Rotary inertias ; Spinning ; Vertical spinning Rayleigh beams ; Whirling speeds</subject><ispartof>International journal of mechanical sciences, 2013-03, Vol.68, p.291-303</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-adc094879ec6a898ad1c59aa34c55ff94777bd9e6a97e4450af4d85fa78bcdf23</citedby><cites>FETCH-LOGICAL-c345t-adc094879ec6a898ad1c59aa34c55ff94777bd9e6a97e4450af4d85fa78bcdf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijmecsci.2013.01.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Frank Pai, P.</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Du, Xingwen</creatorcontrib><title>Modeling and dynamic characteristics of spinning Rayleigh beams</title><title>International journal of mechanical sciences</title><description>This paper derives linear and nonlinear models of spinning Rayleigh beams and investigates dynamic characteristics of downward vertical spinning Rayleigh beams with six different sets of boundary conditions. The derivations show that an important linear term due to centrifugal forces is missing in many reports in the literature because of inconsistent use of nonlinear terms in the derivation, but this term is indispensible for correct modeling and analysis of spinning beams. The influences of rotary inertia, spinning speed, Coriolis and centrifugal forces, slenderness, and gravity on forward and backward whirling speeds, whirling mode shapes, and critical speeds are investigated in detail using analytical and finite-element methods. Numerical results show that each forward whirling speed increases up to its critical speed and the corresponding backward whirling speed decreases when the spinning speed increases. Each forward whirling speed is higher than the corresponding backward whirling speed, and the difference increases when the spinning speed and the mode number increase and the slenderness ratio decreases. For a spinning Rayleigh beam with any of the six different sets of boundary conditions, there are infinite (instead of finite, as some reports said) forward critical speeds and infinite backward critical speeds. Moreover, gravity increases the forward and backward whirling speeds of a downward spinning uniform beam, but the increase is significant only if it is a very long thin beam. ► Present linear and nonlinear models of spinning Rayleigh beams. ► Point out an important centrifugal term often missing in the literature. ► Investigate whirling and critical speeds under different boundary conditions. ► Investigate influences of rotary inertia, Coriolis and centrifugal forces, and gravity. ► Show that the missing term explains some inconsistent results in the literature.</description><subject>Beams (radiation)</subject><subject>Boundary conditions</subject><subject>Centrifugal force</subject><subject>Coriolis and centrifugal forces</subject><subject>Critical speeds</subject><subject>Derivation</subject><subject>Gravitation</subject><subject>Gravitational effect</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Rotary inertias</subject><subject>Spinning</subject><subject>Vertical spinning Rayleigh beams</subject><subject>Whirling speeds</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QWbpZsa8ZjJZqRRfUBFE1-E2uWkzzKMmo9B_75Tq2tXdfOdw7kfIJaMFo6y6borQdGiTDQWnTBSUFZTrIzJjtdI5ZxU_JjNKOc2VpOKUnKXUUMoULcWM3LwMDtvQrzPoXeZ2PXTBZnYDEeyIMaQx2JQNPkvb0Pd77g12LYb1JlshdOmcnHhoE1783jn5eLh_Xzzly9fH58XdMrdClmMOzlItpz1oK6h1DY7ZUgMIacvSey2VUiunsQKtUMqSgpeuLj2oemWd52JOrg692zh8fmEaTReSxbaFHoevZJjggpdKSz2h1QG1cUgpojfbGDqIO8Oo2RszjfkzZvbGDGVmMjYFbw9BnB75DhjNRGBv0YWIdjRuCP9V_ABXRXi3</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Frank Pai, P.</creator><creator>Qian, Xin</creator><creator>Du, Xingwen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201303</creationdate><title>Modeling and dynamic characteristics of spinning Rayleigh beams</title><author>Frank Pai, P. ; Qian, Xin ; Du, Xingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-adc094879ec6a898ad1c59aa34c55ff94777bd9e6a97e4450af4d85fa78bcdf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beams (radiation)</topic><topic>Boundary conditions</topic><topic>Centrifugal force</topic><topic>Coriolis and centrifugal forces</topic><topic>Critical speeds</topic><topic>Derivation</topic><topic>Gravitation</topic><topic>Gravitational effect</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Rotary inertias</topic><topic>Spinning</topic><topic>Vertical spinning Rayleigh beams</topic><topic>Whirling speeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank Pai, P.</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Du, Xingwen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank Pai, P.</au><au>Qian, Xin</au><au>Du, Xingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and dynamic characteristics of spinning Rayleigh beams</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2013-03</date><risdate>2013</risdate><volume>68</volume><spage>291</spage><epage>303</epage><pages>291-303</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><abstract>This paper derives linear and nonlinear models of spinning Rayleigh beams and investigates dynamic characteristics of downward vertical spinning Rayleigh beams with six different sets of boundary conditions. The derivations show that an important linear term due to centrifugal forces is missing in many reports in the literature because of inconsistent use of nonlinear terms in the derivation, but this term is indispensible for correct modeling and analysis of spinning beams. The influences of rotary inertia, spinning speed, Coriolis and centrifugal forces, slenderness, and gravity on forward and backward whirling speeds, whirling mode shapes, and critical speeds are investigated in detail using analytical and finite-element methods. Numerical results show that each forward whirling speed increases up to its critical speed and the corresponding backward whirling speed decreases when the spinning speed increases. Each forward whirling speed is higher than the corresponding backward whirling speed, and the difference increases when the spinning speed and the mode number increase and the slenderness ratio decreases. For a spinning Rayleigh beam with any of the six different sets of boundary conditions, there are infinite (instead of finite, as some reports said) forward critical speeds and infinite backward critical speeds. Moreover, gravity increases the forward and backward whirling speeds of a downward spinning uniform beam, but the increase is significant only if it is a very long thin beam. ► Present linear and nonlinear models of spinning Rayleigh beams. ► Point out an important centrifugal term often missing in the literature. ► Investigate whirling and critical speeds under different boundary conditions. ► Investigate influences of rotary inertia, Coriolis and centrifugal forces, and gravity. ► Show that the missing term explains some inconsistent results in the literature.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2013.01.029</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 2013-03, Vol.68, p.291-303
issn 0020-7403
1879-2162
language eng
recordid cdi_proquest_miscellaneous_1323257949
source Elsevier ScienceDirect Journals Complete
subjects Beams (radiation)
Boundary conditions
Centrifugal force
Coriolis and centrifugal forces
Critical speeds
Derivation
Gravitation
Gravitational effect
Mathematical analysis
Nonlinearity
Rotary inertias
Spinning
Vertical spinning Rayleigh beams
Whirling speeds
title Modeling and dynamic characteristics of spinning Rayleigh beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20dynamic%20characteristics%20of%20spinning%20Rayleigh%20beams&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Frank%20Pai,%20P.&rft.date=2013-03&rft.volume=68&rft.spage=291&rft.epage=303&rft.pages=291-303&rft.issn=0020-7403&rft.eissn=1879-2162&rft_id=info:doi/10.1016/j.ijmecsci.2013.01.029&rft_dat=%3Cproquest_cross%3E1323257949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323257949&rft_id=info:pmid/&rft_els_id=S0020740313000374&rfr_iscdi=true