Gravitational sedimentation of gold nanoparticles
[Display omitted] ► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves ar...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2013-04, Vol.396, p.53-62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | |
container_start_page | 53 |
container_title | Journal of colloid and interface science |
container_volume | 396 |
creator | Alexander, Colleen M. Dabrowiak, James C. Goodisman, Jerry |
description | [Display omitted]
► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves are analyzed to get information about the size histogram in situ.
We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2nm, and gave diameter distribution histograms. The Mason–Weaver sedimentation–diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve. |
doi_str_mv | 10.1016/j.jcis.2013.01.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323255630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979713000180</els_id><sourcerecordid>1315630025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5f8bb56a853bd655a5a085226482028634565679ed9a289522efa037e58bed823</originalsourceid><addsrcrecordid>eNqN0cFq3DAQBmBRGppN2hfood1LoBe7M5LHlqGXEtK0EMihzVmMZTlo8VpbyRvo21fG2xxDT0Lom1_ilxDvEUoErD_vyp31qZSAqgQsAeiV2CC0VDQI6rXYAEgs2qZtzsVFSjsARKL2jTiXqgKF2GwE3kZ-8jPPPkw8bpPr_d5N634bhu1jGPvtxFM4cJy9HV16K84GHpN7d1ovxcO3m1_X34u7-9sf11_vCltVai5o0F1HNWtSXV8TMTFokrKutASpa1VRTXXTur5lqdt84gYG1TjSneu1VJfi05p7iOH30aXZ7H2ybhx5cuGYDCqpJFGt4D8oLg4kZSpXamNIKbrBHKLfc_xjEMzSqtmZpVWztGoATW41D3045R-7veufR_7VmMHVCXCyPA6RpyXj2TWo24owu4-rGzgYfozZPPzMN9UA0OgKdBZfVuFytU_eRZOsd5PN_xKdnU0f_Esv_QtfkZv1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315630025</pqid></control><display><type>article</type><title>Gravitational sedimentation of gold nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Alexander, Colleen M. ; Dabrowiak, James C. ; Goodisman, Jerry</creator><creatorcontrib>Alexander, Colleen M. ; Dabrowiak, James C. ; Goodisman, Jerry</creatorcontrib><description>[Display omitted]
► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves are analyzed to get information about the size histogram in situ.
We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2nm, and gave diameter distribution histograms. The Mason–Weaver sedimentation–diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2013.01.005</identifier><identifier>PMID: 23403117</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Beams (radiation) ; Chemistry ; Colloidal state and disperse state ; Diffusion ; equations ; Exact sciences and technology ; Extinction coefficient ; General and physical chemistry ; Gold ; Gold nanoparticles ; Gravitation ; Gravitational sedimentation ; Histogram ; Histograms ; Mathematical analysis ; Mathematical Concepts ; Metal Nanoparticles - chemistry ; Microscopy, Electron, Transmission ; nanogold ; Nanoparticles ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Sedimentation ; Sediments ; Spectrophotometry ; Transmission electron microscopy ; ultracentrifugation ; Ultracentrifugation - methods</subject><ispartof>Journal of colloid and interface science, 2013-04, Vol.396, p.53-62</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5f8bb56a853bd655a5a085226482028634565679ed9a289522efa037e58bed823</citedby><cites>FETCH-LOGICAL-c443t-5f8bb56a853bd655a5a085226482028634565679ed9a289522efa037e58bed823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2013.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27189451$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23403117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexander, Colleen M.</creatorcontrib><creatorcontrib>Dabrowiak, James C.</creatorcontrib><creatorcontrib>Goodisman, Jerry</creatorcontrib><title>Gravitational sedimentation of gold nanoparticles</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves are analyzed to get information about the size histogram in situ.
We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2nm, and gave diameter distribution histograms. The Mason–Weaver sedimentation–diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve.</description><subject>Beams (radiation)</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Diffusion</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Extinction coefficient</subject><subject>General and physical chemistry</subject><subject>Gold</subject><subject>Gold nanoparticles</subject><subject>Gravitation</subject><subject>Gravitational sedimentation</subject><subject>Histogram</subject><subject>Histograms</subject><subject>Mathematical analysis</subject><subject>Mathematical Concepts</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>nanogold</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Sedimentation</subject><subject>Sediments</subject><subject>Spectrophotometry</subject><subject>Transmission electron microscopy</subject><subject>ultracentrifugation</subject><subject>Ultracentrifugation - methods</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0cFq3DAQBmBRGppN2hfood1LoBe7M5LHlqGXEtK0EMihzVmMZTlo8VpbyRvo21fG2xxDT0Lom1_ilxDvEUoErD_vyp31qZSAqgQsAeiV2CC0VDQI6rXYAEgs2qZtzsVFSjsARKL2jTiXqgKF2GwE3kZ-8jPPPkw8bpPr_d5N634bhu1jGPvtxFM4cJy9HV16K84GHpN7d1ovxcO3m1_X34u7-9sf11_vCltVai5o0F1HNWtSXV8TMTFokrKutASpa1VRTXXTur5lqdt84gYG1TjSneu1VJfi05p7iOH30aXZ7H2ybhx5cuGYDCqpJFGt4D8oLg4kZSpXamNIKbrBHKLfc_xjEMzSqtmZpVWztGoATW41D3045R-7veufR_7VmMHVCXCyPA6RpyXj2TWo24owu4-rGzgYfozZPPzMN9UA0OgKdBZfVuFytU_eRZOsd5PN_xKdnU0f_Esv_QtfkZv1</recordid><startdate>20130415</startdate><enddate>20130415</enddate><creator>Alexander, Colleen M.</creator><creator>Dabrowiak, James C.</creator><creator>Goodisman, Jerry</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130415</creationdate><title>Gravitational sedimentation of gold nanoparticles</title><author>Alexander, Colleen M. ; Dabrowiak, James C. ; Goodisman, Jerry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5f8bb56a853bd655a5a085226482028634565679ed9a289522efa037e58bed823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beams (radiation)</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Diffusion</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Extinction coefficient</topic><topic>General and physical chemistry</topic><topic>Gold</topic><topic>Gold nanoparticles</topic><topic>Gravitation</topic><topic>Gravitational sedimentation</topic><topic>Histogram</topic><topic>Histograms</topic><topic>Mathematical analysis</topic><topic>Mathematical Concepts</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>nanogold</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Sedimentation</topic><topic>Sediments</topic><topic>Spectrophotometry</topic><topic>Transmission electron microscopy</topic><topic>ultracentrifugation</topic><topic>Ultracentrifugation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Colleen M.</creatorcontrib><creatorcontrib>Dabrowiak, James C.</creatorcontrib><creatorcontrib>Goodisman, Jerry</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Colleen M.</au><au>Dabrowiak, James C.</au><au>Goodisman, Jerry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational sedimentation of gold nanoparticles</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2013-04-15</date><risdate>2013</risdate><volume>396</volume><spage>53</spage><epage>62</epage><pages>53-62</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted]
► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves are analyzed to get information about the size histogram in situ.
We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2nm, and gave diameter distribution histograms. The Mason–Weaver sedimentation–diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23403117</pmid><doi>10.1016/j.jcis.2013.01.005</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2013-04, Vol.396, p.53-62 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323255630 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Beams (radiation) Chemistry Colloidal state and disperse state Diffusion equations Exact sciences and technology Extinction coefficient General and physical chemistry Gold Gold nanoparticles Gravitation Gravitational sedimentation Histogram Histograms Mathematical analysis Mathematical Concepts Metal Nanoparticles - chemistry Microscopy, Electron, Transmission nanogold Nanoparticles Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena Sedimentation Sediments Spectrophotometry Transmission electron microscopy ultracentrifugation Ultracentrifugation - methods |
title | Gravitational sedimentation of gold nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20sedimentation%20of%20gold%20nanoparticles&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Alexander,%20Colleen%20M.&rft.date=2013-04-15&rft.volume=396&rft.spage=53&rft.epage=62&rft.pages=53-62&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2013.01.005&rft_dat=%3Cproquest_cross%3E1315630025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315630025&rft_id=info:pmid/23403117&rft_els_id=S0021979713000180&rfr_iscdi=true |