Gravitational sedimentation of gold nanoparticles

[Display omitted] ► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2013-04, Vol.396, p.53-62
Hauptverfasser: Alexander, Colleen M., Dabrowiak, James C., Goodisman, Jerry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue
container_start_page 53
container_title Journal of colloid and interface science
container_volume 396
creator Alexander, Colleen M.
Dabrowiak, James C.
Goodisman, Jerry
description [Display omitted] ► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves are analyzed to get information about the size histogram in situ. We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2nm, and gave diameter distribution histograms. The Mason–Weaver sedimentation–diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve.
doi_str_mv 10.1016/j.jcis.2013.01.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323255630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979713000180</els_id><sourcerecordid>1315630025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5f8bb56a853bd655a5a085226482028634565679ed9a289522efa037e58bed823</originalsourceid><addsrcrecordid>eNqN0cFq3DAQBmBRGppN2hfood1LoBe7M5LHlqGXEtK0EMihzVmMZTlo8VpbyRvo21fG2xxDT0Lom1_ilxDvEUoErD_vyp31qZSAqgQsAeiV2CC0VDQI6rXYAEgs2qZtzsVFSjsARKL2jTiXqgKF2GwE3kZ-8jPPPkw8bpPr_d5N634bhu1jGPvtxFM4cJy9HV16K84GHpN7d1ovxcO3m1_X34u7-9sf11_vCltVai5o0F1HNWtSXV8TMTFokrKutASpa1VRTXXTur5lqdt84gYG1TjSneu1VJfi05p7iOH30aXZ7H2ybhx5cuGYDCqpJFGt4D8oLg4kZSpXamNIKbrBHKLfc_xjEMzSqtmZpVWztGoATW41D3045R-7veufR_7VmMHVCXCyPA6RpyXj2TWo24owu4-rGzgYfozZPPzMN9UA0OgKdBZfVuFytU_eRZOsd5PN_xKdnU0f_Esv_QtfkZv1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315630025</pqid></control><display><type>article</type><title>Gravitational sedimentation of gold nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Alexander, Colleen M. ; Dabrowiak, James C. ; Goodisman, Jerry</creator><creatorcontrib>Alexander, Colleen M. ; Dabrowiak, James C. ; Goodisman, Jerry</creatorcontrib><description>[Display omitted] ► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves are analyzed to get information about the size histogram in situ. We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2nm, and gave diameter distribution histograms. The Mason–Weaver sedimentation–diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2013.01.005</identifier><identifier>PMID: 23403117</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Beams (radiation) ; Chemistry ; Colloidal state and disperse state ; Diffusion ; equations ; Exact sciences and technology ; Extinction coefficient ; General and physical chemistry ; Gold ; Gold nanoparticles ; Gravitation ; Gravitational sedimentation ; Histogram ; Histograms ; Mathematical analysis ; Mathematical Concepts ; Metal Nanoparticles - chemistry ; Microscopy, Electron, Transmission ; nanogold ; Nanoparticles ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Sedimentation ; Sediments ; Spectrophotometry ; Transmission electron microscopy ; ultracentrifugation ; Ultracentrifugation - methods</subject><ispartof>Journal of colloid and interface science, 2013-04, Vol.396, p.53-62</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5f8bb56a853bd655a5a085226482028634565679ed9a289522efa037e58bed823</citedby><cites>FETCH-LOGICAL-c443t-5f8bb56a853bd655a5a085226482028634565679ed9a289522efa037e58bed823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2013.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27189451$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23403117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexander, Colleen M.</creatorcontrib><creatorcontrib>Dabrowiak, James C.</creatorcontrib><creatorcontrib>Goodisman, Jerry</creatorcontrib><title>Gravitational sedimentation of gold nanoparticles</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] ► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves are analyzed to get information about the size histogram in situ. We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2nm, and gave diameter distribution histograms. The Mason–Weaver sedimentation–diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve.</description><subject>Beams (radiation)</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Diffusion</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Extinction coefficient</subject><subject>General and physical chemistry</subject><subject>Gold</subject><subject>Gold nanoparticles</subject><subject>Gravitation</subject><subject>Gravitational sedimentation</subject><subject>Histogram</subject><subject>Histograms</subject><subject>Mathematical analysis</subject><subject>Mathematical Concepts</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>nanogold</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Sedimentation</subject><subject>Sediments</subject><subject>Spectrophotometry</subject><subject>Transmission electron microscopy</subject><subject>ultracentrifugation</subject><subject>Ultracentrifugation - methods</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0cFq3DAQBmBRGppN2hfood1LoBe7M5LHlqGXEtK0EMihzVmMZTlo8VpbyRvo21fG2xxDT0Lom1_ilxDvEUoErD_vyp31qZSAqgQsAeiV2CC0VDQI6rXYAEgs2qZtzsVFSjsARKL2jTiXqgKF2GwE3kZ-8jPPPkw8bpPr_d5N634bhu1jGPvtxFM4cJy9HV16K84GHpN7d1ovxcO3m1_X34u7-9sf11_vCltVai5o0F1HNWtSXV8TMTFokrKutASpa1VRTXXTur5lqdt84gYG1TjSneu1VJfi05p7iOH30aXZ7H2ybhx5cuGYDCqpJFGt4D8oLg4kZSpXamNIKbrBHKLfc_xjEMzSqtmZpVWztGoATW41D3045R-7veufR_7VmMHVCXCyPA6RpyXj2TWo24owu4-rGzgYfozZPPzMN9UA0OgKdBZfVuFytU_eRZOsd5PN_xKdnU0f_Esv_QtfkZv1</recordid><startdate>20130415</startdate><enddate>20130415</enddate><creator>Alexander, Colleen M.</creator><creator>Dabrowiak, James C.</creator><creator>Goodisman, Jerry</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130415</creationdate><title>Gravitational sedimentation of gold nanoparticles</title><author>Alexander, Colleen M. ; Dabrowiak, James C. ; Goodisman, Jerry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5f8bb56a853bd655a5a085226482028634565679ed9a289522efa037e58bed823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beams (radiation)</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Diffusion</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Extinction coefficient</topic><topic>General and physical chemistry</topic><topic>Gold</topic><topic>Gold nanoparticles</topic><topic>Gravitation</topic><topic>Gravitational sedimentation</topic><topic>Histogram</topic><topic>Histograms</topic><topic>Mathematical analysis</topic><topic>Mathematical Concepts</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>nanogold</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Sedimentation</topic><topic>Sediments</topic><topic>Spectrophotometry</topic><topic>Transmission electron microscopy</topic><topic>ultracentrifugation</topic><topic>Ultracentrifugation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Colleen M.</creatorcontrib><creatorcontrib>Dabrowiak, James C.</creatorcontrib><creatorcontrib>Goodisman, Jerry</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Colleen M.</au><au>Dabrowiak, James C.</au><au>Goodisman, Jerry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational sedimentation of gold nanoparticles</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2013-04-15</date><risdate>2013</risdate><volume>396</volume><spage>53</spage><epage>62</epage><pages>53-62</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted] ► Sedimentation of collections of gold nanoparticles is measured with simple apparatus. ► Agreement with calculated results shows interparticle interactions are unimportant. ► Disagreements show errors in the TEM histogram or inhomogeneities in suspension. ► Sedimentation curves are analyzed to get information about the size histogram in situ. We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2nm, and gave diameter distribution histograms. The Mason–Weaver sedimentation–diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23403117</pmid><doi>10.1016/j.jcis.2013.01.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2013-04, Vol.396, p.53-62
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_1323255630
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Beams (radiation)
Chemistry
Colloidal state and disperse state
Diffusion
equations
Exact sciences and technology
Extinction coefficient
General and physical chemistry
Gold
Gold nanoparticles
Gravitation
Gravitational sedimentation
Histogram
Histograms
Mathematical analysis
Mathematical Concepts
Metal Nanoparticles - chemistry
Microscopy, Electron, Transmission
nanogold
Nanoparticles
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Sedimentation
Sediments
Spectrophotometry
Transmission electron microscopy
ultracentrifugation
Ultracentrifugation - methods
title Gravitational sedimentation of gold nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20sedimentation%20of%20gold%20nanoparticles&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Alexander,%20Colleen%20M.&rft.date=2013-04-15&rft.volume=396&rft.spage=53&rft.epage=62&rft.pages=53-62&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2013.01.005&rft_dat=%3Cproquest_cross%3E1315630025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315630025&rft_id=info:pmid/23403117&rft_els_id=S0021979713000180&rfr_iscdi=true