Transport in the random Kronig-Penney model
The Kronig-Penney model with random Dirac potentials on the lattice \documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document} Z has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum dif...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2012-12, Vol.53 (12), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 53 |
creator | Drabkin, Maxim Kirsch, Werner Schulz-Baldes, Hermann |
description | The Kronig-Penney model with random Dirac potentials on the lattice
\documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document}
Z
has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point. |
doi_str_mv | 10.1063/1.4769219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323238067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856336081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-c99067044ee8b933ea9bfc777b2f8ba82355b277e95ef0e261d2d3b8db0bab5f3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYEMELU3ObJLOU4g0LuqjrkGQSHZlJajIV-vamtCgIShaHwJf_hB-AYwQnCDJyhSaUsxqjegeMEBR1yVkldsEIQoxLTIXYBwcpvUOIkKB0BC7nUfm0CHEoWl8Mb7bI9yb0xWMMvn0tn633dlX0obHdIdhzqkv2aDvH4OX2Zj69L2dPdw_T61lpaMWG0tQ1ZBxSaq3QNSFW1doZzrnGTmglMKkqjTm3dWUdtJihBjdEi0ZDrXTlyBicbXIXMXwsbRpk3yZju055G5ZJIoLzEXlJpie_6HtYRp9_JxFmDFeYZDoG5xtlYkgpWicXse1VXEkE5bo2ieS2tmxPt4kqGdW5XIdp0_cDzARliK7dxcYl0w5qaIP_N_RP_BniD5SLxpEveK6GHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266252332</pqid></control><display><type>article</type><title>Transport in the random Kronig-Penney model</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Drabkin, Maxim ; Kirsch, Werner ; Schulz-Baldes, Hermann</creator><creatorcontrib>Drabkin, Maxim ; Kirsch, Werner ; Schulz-Baldes, Hermann</creatorcontrib><description>The Kronig-Penney model with random Dirac potentials on the lattice
\documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document}
Z
has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4769219</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Density of states ; Diffusion ; Exact sciences and technology ; Lattice theory ; Lattices ; Lyapunov exponents ; Mathematical functions ; Mathematical methods in physics ; Mathematical models ; Mathematics ; Physics ; Quantum physics ; Schrodinger equation ; Sciences and techniques of general use ; Singularities ; Transport</subject><ispartof>Journal of mathematical physics, 2012-12, Vol.53 (12), p.1</ispartof><rights>American Institute of Physics</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Institute of Physics Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-c99067044ee8b933ea9bfc777b2f8ba82355b277e95ef0e261d2d3b8db0bab5f3</citedby><cites>FETCH-LOGICAL-c456t-c99067044ee8b933ea9bfc777b2f8ba82355b277e95ef0e261d2d3b8db0bab5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4769219$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76127,76133</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26846149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Drabkin, Maxim</creatorcontrib><creatorcontrib>Kirsch, Werner</creatorcontrib><creatorcontrib>Schulz-Baldes, Hermann</creatorcontrib><title>Transport in the random Kronig-Penney model</title><title>Journal of mathematical physics</title><description>The Kronig-Penney model with random Dirac potentials on the lattice
\documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document}
Z
has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point.</description><subject>Density of states</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Lyapunov exponents</subject><subject>Mathematical functions</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Sciences and techniques of general use</subject><subject>Singularities</subject><subject>Transport</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYEMELU3ObJLOU4g0LuqjrkGQSHZlJajIV-vamtCgIShaHwJf_hB-AYwQnCDJyhSaUsxqjegeMEBR1yVkldsEIQoxLTIXYBwcpvUOIkKB0BC7nUfm0CHEoWl8Mb7bI9yb0xWMMvn0tn633dlX0obHdIdhzqkv2aDvH4OX2Zj69L2dPdw_T61lpaMWG0tQ1ZBxSaq3QNSFW1doZzrnGTmglMKkqjTm3dWUdtJihBjdEi0ZDrXTlyBicbXIXMXwsbRpk3yZju055G5ZJIoLzEXlJpie_6HtYRp9_JxFmDFeYZDoG5xtlYkgpWicXse1VXEkE5bo2ieS2tmxPt4kqGdW5XIdp0_cDzARliK7dxcYl0w5qaIP_N_RP_BniD5SLxpEveK6GHw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Drabkin, Maxim</creator><creator>Kirsch, Werner</creator><creator>Schulz-Baldes, Hermann</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Transport in the random Kronig-Penney model</title><author>Drabkin, Maxim ; Kirsch, Werner ; Schulz-Baldes, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-c99067044ee8b933ea9bfc777b2f8ba82355b277e95ef0e261d2d3b8db0bab5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Density of states</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Lyapunov exponents</topic><topic>Mathematical functions</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Sciences and techniques of general use</topic><topic>Singularities</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drabkin, Maxim</creatorcontrib><creatorcontrib>Kirsch, Werner</creatorcontrib><creatorcontrib>Schulz-Baldes, Hermann</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drabkin, Maxim</au><au>Kirsch, Werner</au><au>Schulz-Baldes, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport in the random Kronig-Penney model</atitle><jtitle>Journal of mathematical physics</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>53</volume><issue>12</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The Kronig-Penney model with random Dirac potentials on the lattice
\documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document}
Z
has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4769219</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2012-12, Vol.53 (12), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323238067 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Density of states Diffusion Exact sciences and technology Lattice theory Lattices Lyapunov exponents Mathematical functions Mathematical methods in physics Mathematical models Mathematics Physics Quantum physics Schrodinger equation Sciences and techniques of general use Singularities Transport |
title | Transport in the random Kronig-Penney model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20in%20the%20random%20Kronig-Penney%20model&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Drabkin,%20Maxim&rft.date=2012-12-01&rft.volume=53&rft.issue=12&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4769219&rft_dat=%3Cproquest_scita%3E2856336081%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266252332&rft_id=info:pmid/&rfr_iscdi=true |