Transport in the random Kronig-Penney model

The Kronig-Penney model with random Dirac potentials on the lattice \documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document} Z has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2012-12, Vol.53 (12), p.1
Hauptverfasser: Drabkin, Maxim, Kirsch, Werner, Schulz-Baldes, Hermann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1
container_title Journal of mathematical physics
container_volume 53
creator Drabkin, Maxim
Kirsch, Werner
Schulz-Baldes, Hermann
description The Kronig-Penney model with random Dirac potentials on the lattice \documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document} Z has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point.
doi_str_mv 10.1063/1.4769219
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323238067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856336081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-c99067044ee8b933ea9bfc777b2f8ba82355b277e95ef0e261d2d3b8db0bab5f3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYEMELU3ObJLOU4g0LuqjrkGQSHZlJajIV-vamtCgIShaHwJf_hB-AYwQnCDJyhSaUsxqjegeMEBR1yVkldsEIQoxLTIXYBwcpvUOIkKB0BC7nUfm0CHEoWl8Mb7bI9yb0xWMMvn0tn633dlX0obHdIdhzqkv2aDvH4OX2Zj69L2dPdw_T61lpaMWG0tQ1ZBxSaq3QNSFW1doZzrnGTmglMKkqjTm3dWUdtJihBjdEi0ZDrXTlyBicbXIXMXwsbRpk3yZju055G5ZJIoLzEXlJpie_6HtYRp9_JxFmDFeYZDoG5xtlYkgpWicXse1VXEkE5bo2ieS2tmxPt4kqGdW5XIdp0_cDzARliK7dxcYl0w5qaIP_N_RP_BniD5SLxpEveK6GHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266252332</pqid></control><display><type>article</type><title>Transport in the random Kronig-Penney model</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Drabkin, Maxim ; Kirsch, Werner ; Schulz-Baldes, Hermann</creator><creatorcontrib>Drabkin, Maxim ; Kirsch, Werner ; Schulz-Baldes, Hermann</creatorcontrib><description>The Kronig-Penney model with random Dirac potentials on the lattice \documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document} Z has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4769219</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Density of states ; Diffusion ; Exact sciences and technology ; Lattice theory ; Lattices ; Lyapunov exponents ; Mathematical functions ; Mathematical methods in physics ; Mathematical models ; Mathematics ; Physics ; Quantum physics ; Schrodinger equation ; Sciences and techniques of general use ; Singularities ; Transport</subject><ispartof>Journal of mathematical physics, 2012-12, Vol.53 (12), p.1</ispartof><rights>American Institute of Physics</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Institute of Physics Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-c99067044ee8b933ea9bfc777b2f8ba82355b277e95ef0e261d2d3b8db0bab5f3</citedby><cites>FETCH-LOGICAL-c456t-c99067044ee8b933ea9bfc777b2f8ba82355b277e95ef0e261d2d3b8db0bab5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4769219$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76127,76133</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26846149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Drabkin, Maxim</creatorcontrib><creatorcontrib>Kirsch, Werner</creatorcontrib><creatorcontrib>Schulz-Baldes, Hermann</creatorcontrib><title>Transport in the random Kronig-Penney model</title><title>Journal of mathematical physics</title><description>The Kronig-Penney model with random Dirac potentials on the lattice \documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document} Z has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point.</description><subject>Density of states</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Lyapunov exponents</subject><subject>Mathematical functions</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Sciences and techniques of general use</subject><subject>Singularities</subject><subject>Transport</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYEMELU3ObJLOU4g0LuqjrkGQSHZlJajIV-vamtCgIShaHwJf_hB-AYwQnCDJyhSaUsxqjegeMEBR1yVkldsEIQoxLTIXYBwcpvUOIkKB0BC7nUfm0CHEoWl8Mb7bI9yb0xWMMvn0tn633dlX0obHdIdhzqkv2aDvH4OX2Zj69L2dPdw_T61lpaMWG0tQ1ZBxSaq3QNSFW1doZzrnGTmglMKkqjTm3dWUdtJihBjdEi0ZDrXTlyBicbXIXMXwsbRpk3yZju055G5ZJIoLzEXlJpie_6HtYRp9_JxFmDFeYZDoG5xtlYkgpWicXse1VXEkE5bo2ieS2tmxPt4kqGdW5XIdp0_cDzARliK7dxcYl0w5qaIP_N_RP_BniD5SLxpEveK6GHw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Drabkin, Maxim</creator><creator>Kirsch, Werner</creator><creator>Schulz-Baldes, Hermann</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Transport in the random Kronig-Penney model</title><author>Drabkin, Maxim ; Kirsch, Werner ; Schulz-Baldes, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-c99067044ee8b933ea9bfc777b2f8ba82355b277e95ef0e261d2d3b8db0bab5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Density of states</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Lyapunov exponents</topic><topic>Mathematical functions</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Sciences and techniques of general use</topic><topic>Singularities</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drabkin, Maxim</creatorcontrib><creatorcontrib>Kirsch, Werner</creatorcontrib><creatorcontrib>Schulz-Baldes, Hermann</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drabkin, Maxim</au><au>Kirsch, Werner</au><au>Schulz-Baldes, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport in the random Kronig-Penney model</atitle><jtitle>Journal of mathematical physics</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>53</volume><issue>12</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The Kronig-Penney model with random Dirac potentials on the lattice \documentclass[12pt]{minimal}\begin{document}${\mathbb {Z}}$\end{document} Z has critical energies at which the Lyapunov exponent vanishes and the density of states has a van Hove singularity. This leads to a non-trivial quantum diffusion even though the spectrum is known to be pure-point.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4769219</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2012-12, Vol.53 (12), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_miscellaneous_1323238067
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Density of states
Diffusion
Exact sciences and technology
Lattice theory
Lattices
Lyapunov exponents
Mathematical functions
Mathematical methods in physics
Mathematical models
Mathematics
Physics
Quantum physics
Schrodinger equation
Sciences and techniques of general use
Singularities
Transport
title Transport in the random Kronig-Penney model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20in%20the%20random%20Kronig-Penney%20model&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Drabkin,%20Maxim&rft.date=2012-12-01&rft.volume=53&rft.issue=12&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4769219&rft_dat=%3Cproquest_scita%3E2856336081%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266252332&rft_id=info:pmid/&rfr_iscdi=true