Metal-semiconductor-metal photodetectors based on graphene/ p -type silicon Schottky junctions
Metal-semiconductor-metal (MSM) photodetectors based on graphene/p-type Si Schottky junctions are fabricated and characterized. Thermionic emission dominates the transport across the junctions above 260 K with a zero-bias barrier height of 0.48 eV. The reverse-bias dependence of the barrier height i...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-01, Vol.102 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal-semiconductor-metal (MSM) photodetectors based on graphene/p-type Si Schottky junctions are fabricated and characterized. Thermionic emission dominates the transport across the junctions above 260 K with a zero-bias barrier height of 0.48 eV. The reverse-bias dependence of the barrier height is found to result mostly from the Fermi level shift in graphene. MSM photodetectors exhibit a responsivity of 0.11 A/W and a normalized photocurrent-to-dark current ratio of 4.55 × 104 mW−1, which are larger than those previously obtained for similar detectors based on carbon nanotubes. These results are important for the integration of transparent, conductive graphene electrodes into existing silicon technologies. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4773992 |