Isoperimetric inequalities for an ergodic stochastic control problem

In this paper we deal with blow-up solutions to an elliptic equation with a nonlinear gradient term. The problem under consideration can be seen as the ergodic limit of a stochastic control problem with state constraints. It is well known that it has a solution only when a parameter which appears in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2013-03, Vol.46 (3-4), p.749-768
Hauptverfasser: Ferone, Vincenzo, Giarrusso, Ester, Messano, Basilio, Posteraro, M. Rosaria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 768
container_issue 3-4
container_start_page 749
container_title Calculus of variations and partial differential equations
container_volume 46
creator Ferone, Vincenzo
Giarrusso, Ester
Messano, Basilio
Posteraro, M. Rosaria
description In this paper we deal with blow-up solutions to an elliptic equation with a nonlinear gradient term. The problem under consideration can be seen as the ergodic limit of a stochastic control problem with state constraints. It is well known that it has a solution only when a parameter which appears in the equation assumes a particular value known as ergodic constant . For such a constant many properties similar to those of an eigenvalue hold true. We show that a Faber–Krahn inequality can be stated for the ergodic constant and that for the corresponding solution a comparison result in terms of the solution to a symmetrized problem can be proved.
doi_str_mv 10.1007/s00526-012-0502-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323223855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886278761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a6510e8e3d83c46305789033641a4605491bd5ef27c5b65ef26e40a81c1536e83</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwA7hV4sKlYOer6RGNr0mTuMA5yjJvdOqaLWkP_HsylQNC4mRbfl-_1sPYNcIdAlT3CUBxXQLyEhTwsjphE5QiT0aoUzaBWsqSa12fs4uUtgCoDJcT9jhPYU-x2VEfG180HR0G1zZ9Q6lYh1i4rqC4Cau8S33wny71ufWh62Noi30My5Z2l-xs7dpEVz91yj6en95nr-Xi7WU-e1iUXsi6L51WCGRIrIzwUgtQlalBCC3RSQ1K1rhcKVrzyqulPjaaJDiDHpXQZMSU3Y53c-5hoNTbXZM8ta3rKAzJouCCc2GUytKbP9JtGGKXv7PIjQJlMCdPGY4qH0NKkdZ2n1G4-GUR7JGrHbnazNUeudoqe_joSVnbbSj-uvyv6RuDW3kc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285058103</pqid></control><display><type>article</type><title>Isoperimetric inequalities for an ergodic stochastic control problem</title><source>Springer Nature - Complete Springer Journals</source><creator>Ferone, Vincenzo ; Giarrusso, Ester ; Messano, Basilio ; Posteraro, M. Rosaria</creator><creatorcontrib>Ferone, Vincenzo ; Giarrusso, Ester ; Messano, Basilio ; Posteraro, M. Rosaria</creatorcontrib><description>In this paper we deal with blow-up solutions to an elliptic equation with a nonlinear gradient term. The problem under consideration can be seen as the ergodic limit of a stochastic control problem with state constraints. It is well known that it has a solution only when a parameter which appears in the equation assumes a particular value known as ergodic constant . For such a constant many properties similar to those of an eigenvalue hold true. We show that a Faber–Krahn inequality can be stated for the ergodic constant and that for the corresponding solution a comparison result in terms of the solution to a symmetrized problem can be proved.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-012-0502-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Eigenvalues ; Ergodic processes ; Inequalities ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinearity ; Partial differential equations ; Stochastic models ; Stochasticity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2013-03, Vol.46 (3-4), p.749-768</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a6510e8e3d83c46305789033641a4605491bd5ef27c5b65ef26e40a81c1536e83</citedby><cites>FETCH-LOGICAL-c349t-a6510e8e3d83c46305789033641a4605491bd5ef27c5b65ef26e40a81c1536e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-012-0502-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-012-0502-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ferone, Vincenzo</creatorcontrib><creatorcontrib>Giarrusso, Ester</creatorcontrib><creatorcontrib>Messano, Basilio</creatorcontrib><creatorcontrib>Posteraro, M. Rosaria</creatorcontrib><title>Isoperimetric inequalities for an ergodic stochastic control problem</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>In this paper we deal with blow-up solutions to an elliptic equation with a nonlinear gradient term. The problem under consideration can be seen as the ergodic limit of a stochastic control problem with state constraints. It is well known that it has a solution only when a parameter which appears in the equation assumes a particular value known as ergodic constant . For such a constant many properties similar to those of an eigenvalue hold true. We show that a Faber–Krahn inequality can be stated for the ergodic constant and that for the corresponding solution a comparison result in terms of the solution to a symmetrized problem can be proved.</description><subject>Analysis</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Eigenvalues</subject><subject>Ergodic processes</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmPwA7hV4sKlYOer6RGNr0mTuMA5yjJvdOqaLWkP_HsylQNC4mRbfl-_1sPYNcIdAlT3CUBxXQLyEhTwsjphE5QiT0aoUzaBWsqSa12fs4uUtgCoDJcT9jhPYU-x2VEfG180HR0G1zZ9Q6lYh1i4rqC4Cau8S33wny71ufWh62Noi30My5Z2l-xs7dpEVz91yj6en95nr-Xi7WU-e1iUXsi6L51WCGRIrIzwUgtQlalBCC3RSQ1K1rhcKVrzyqulPjaaJDiDHpXQZMSU3Y53c-5hoNTbXZM8ta3rKAzJouCCc2GUytKbP9JtGGKXv7PIjQJlMCdPGY4qH0NKkdZ2n1G4-GUR7JGrHbnazNUeudoqe_joSVnbbSj-uvyv6RuDW3kc</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Ferone, Vincenzo</creator><creator>Giarrusso, Ester</creator><creator>Messano, Basilio</creator><creator>Posteraro, M. Rosaria</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Isoperimetric inequalities for an ergodic stochastic control problem</title><author>Ferone, Vincenzo ; Giarrusso, Ester ; Messano, Basilio ; Posteraro, M. Rosaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a6510e8e3d83c46305789033641a4605491bd5ef27c5b65ef26e40a81c1536e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Eigenvalues</topic><topic>Ergodic processes</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferone, Vincenzo</creatorcontrib><creatorcontrib>Giarrusso, Ester</creatorcontrib><creatorcontrib>Messano, Basilio</creatorcontrib><creatorcontrib>Posteraro, M. Rosaria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferone, Vincenzo</au><au>Giarrusso, Ester</au><au>Messano, Basilio</au><au>Posteraro, M. Rosaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoperimetric inequalities for an ergodic stochastic control problem</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>46</volume><issue>3-4</issue><spage>749</spage><epage>768</epage><pages>749-768</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper we deal with blow-up solutions to an elliptic equation with a nonlinear gradient term. The problem under consideration can be seen as the ergodic limit of a stochastic control problem with state constraints. It is well known that it has a solution only when a parameter which appears in the equation assumes a particular value known as ergodic constant . For such a constant many properties similar to those of an eigenvalue hold true. We show that a Faber–Krahn inequality can be stated for the ergodic constant and that for the corresponding solution a comparison result in terms of the solution to a symmetrized problem can be proved.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00526-012-0502-7</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2013-03, Vol.46 (3-4), p.749-768
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_miscellaneous_1323223855
source Springer Nature - Complete Springer Journals
subjects Analysis
Calculus of variations
Calculus of Variations and Optimal Control
Optimization
Control
Eigenvalues
Ergodic processes
Inequalities
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinearity
Partial differential equations
Stochastic models
Stochasticity
Systems Theory
Theoretical
title Isoperimetric inequalities for an ergodic stochastic control problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoperimetric%20inequalities%20for%20an%20ergodic%20stochastic%20control%20problem&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Ferone,%20Vincenzo&rft.date=2013-03-01&rft.volume=46&rft.issue=3-4&rft.spage=749&rft.epage=768&rft.pages=749-768&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-012-0502-7&rft_dat=%3Cproquest_cross%3E2886278761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1285058103&rft_id=info:pmid/&rfr_iscdi=true