Tuning of a new class of robust fractional-order proportional–integral–derivative controllers

A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order ref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Systems and Control Engineering 2012-04, Vol.226 (4), p.486-496
Hauptverfasser: Tenoutit, M, Maamri, N, Trigeassou, J-C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 496
container_issue 4
container_start_page 486
container_title Journal of Systems and Control Engineering
container_volume 226
creator Tenoutit, M
Maamri, N
Trigeassou, J-C
description A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique.
doi_str_mv 10.1177/0959651811423616
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323222376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0959651811423616</sage_id><sourcerecordid>2620022341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4306b9480f3b78beb75ff09413c2b621802f71a5ba134ca81ec94c9b9c72c2263</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouK7ePRZPeqjmq_k4yqKusOBlPYckJmuX2KxJu-LN_-A_9JfYWlEQzGGSmfeZlwwDwDGC5whxfgFlJVmFBEIUE4bYDphgSFFJ-rALJoNcDvo-OMh5DfsjJJ8AveyaulkV0Re6aNxLYYPOeUhTNF1uC5-0bevY6FDG9OBSsUlxE9NY-nh7r5vWrdLXs1frrW7rrStsbNoUQ3ApH4I9r0N2R9_3FNxfXy1n83Jxd3M7u1yUlvCqLSmBzEgqoCeGC-MMr7yHkiJisWEYCYg9R7oyGhFqtUDOSmqlkZZjizEjU3A2-j7qoDapftLpVUVdq_nlQg01SDBkDIst6tnTke2Hee5cbtVTna0LQTcudlkhggnGmPDB9uQPuo5d6mfPSlZQCgkF7SE4QjbFnJPzPx9AUA3rUX_X07eUY0vWK_fr-S__Cd0NkKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>950989084</pqid></control><display><type>article</type><title>Tuning of a new class of robust fractional-order proportional–integral–derivative controllers</title><source>SAGE Complete A-Z List</source><creator>Tenoutit, M ; Maamri, N ; Trigeassou, J-C</creator><creatorcontrib>Tenoutit, M ; Maamri, N ; Trigeassou, J-C</creatorcontrib><description>A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique.</description><identifier>ISSN: 0959-6518</identifier><identifier>EISSN: 2041-3041</identifier><identifier>DOI: 10.1177/0959651811423616</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Closed loop systems ; Computer Science ; Controllers ; Derivatives ; Dynamical systems ; Dynamics ; Guidelines ; Mathematical models ; Mechanical engineering ; Proportional integral derivative ; Simulation ; Tuning</subject><ispartof>Journal of Systems and Control Engineering, 2012-04, Vol.226 (4), p.486-496</ispartof><rights>Authors 2011</rights><rights>Copyright SAGE PUBLICATIONS, INC. Apr 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4306b9480f3b78beb75ff09413c2b621802f71a5ba134ca81ec94c9b9c72c2263</citedby><cites>FETCH-LOGICAL-c375t-4306b9480f3b78beb75ff09413c2b621802f71a5ba134ca81ec94c9b9c72c2263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0959651811423616$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0959651811423616$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,885,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03206628$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tenoutit, M</creatorcontrib><creatorcontrib>Maamri, N</creatorcontrib><creatorcontrib>Trigeassou, J-C</creatorcontrib><title>Tuning of a new class of robust fractional-order proportional–integral–derivative controllers</title><title>Journal of Systems and Control Engineering</title><description>A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique.</description><subject>Closed loop systems</subject><subject>Computer Science</subject><subject>Controllers</subject><subject>Derivatives</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Guidelines</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Proportional integral derivative</subject><subject>Simulation</subject><subject>Tuning</subject><issn>0959-6518</issn><issn>2041-3041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhoMouK7ePRZPeqjmq_k4yqKusOBlPYckJmuX2KxJu-LN_-A_9JfYWlEQzGGSmfeZlwwDwDGC5whxfgFlJVmFBEIUE4bYDphgSFFJ-rALJoNcDvo-OMh5DfsjJJ8AveyaulkV0Re6aNxLYYPOeUhTNF1uC5-0bevY6FDG9OBSsUlxE9NY-nh7r5vWrdLXs1frrW7rrStsbNoUQ3ApH4I9r0N2R9_3FNxfXy1n83Jxd3M7u1yUlvCqLSmBzEgqoCeGC-MMr7yHkiJisWEYCYg9R7oyGhFqtUDOSmqlkZZjizEjU3A2-j7qoDapftLpVUVdq_nlQg01SDBkDIst6tnTke2Hee5cbtVTna0LQTcudlkhggnGmPDB9uQPuo5d6mfPSlZQCgkF7SE4QjbFnJPzPx9AUA3rUX_X07eUY0vWK_fr-S__Cd0NkKM</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Tenoutit, M</creator><creator>Maamri, N</creator><creator>Trigeassou, J-C</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20120401</creationdate><title>Tuning of a new class of robust fractional-order proportional–integral–derivative controllers</title><author>Tenoutit, M ; Maamri, N ; Trigeassou, J-C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4306b9480f3b78beb75ff09413c2b621802f71a5ba134ca81ec94c9b9c72c2263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Closed loop systems</topic><topic>Computer Science</topic><topic>Controllers</topic><topic>Derivatives</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Guidelines</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Proportional integral derivative</topic><topic>Simulation</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenoutit, M</creatorcontrib><creatorcontrib>Maamri, N</creatorcontrib><creatorcontrib>Trigeassou, J-C</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Systems and Control Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenoutit, M</au><au>Maamri, N</au><au>Trigeassou, J-C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning of a new class of robust fractional-order proportional–integral–derivative controllers</atitle><jtitle>Journal of Systems and Control Engineering</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>226</volume><issue>4</issue><spage>486</spage><epage>496</epage><pages>486-496</pages><issn>0959-6518</issn><eissn>2041-3041</eissn><abstract>A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0959651811423616</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-6518
ispartof Journal of Systems and Control Engineering, 2012-04, Vol.226 (4), p.486-496
issn 0959-6518
2041-3041
language eng
recordid cdi_proquest_miscellaneous_1323222376
source SAGE Complete A-Z List
subjects Closed loop systems
Computer Science
Controllers
Derivatives
Dynamical systems
Dynamics
Guidelines
Mathematical models
Mechanical engineering
Proportional integral derivative
Simulation
Tuning
title Tuning of a new class of robust fractional-order proportional–integral–derivative controllers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20of%20a%20new%20class%20of%20robust%20fractional-order%20proportional%E2%80%93integral%E2%80%93derivative%20controllers&rft.jtitle=Journal%20of%20Systems%20and%20Control%20Engineering&rft.au=Tenoutit,%20M&rft.date=2012-04-01&rft.volume=226&rft.issue=4&rft.spage=486&rft.epage=496&rft.pages=486-496&rft.issn=0959-6518&rft.eissn=2041-3041&rft_id=info:doi/10.1177/0959651811423616&rft_dat=%3Cproquest_hal_p%3E2620022341%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=950989084&rft_id=info:pmid/&rft_sage_id=10.1177_0959651811423616&rfr_iscdi=true