Tuning of a new class of robust fractional-order proportional–integral–derivative controllers
A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order ref...
Gespeichert in:
Veröffentlicht in: | Journal of Systems and Control Engineering 2012-04, Vol.226 (4), p.486-496 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 496 |
---|---|
container_issue | 4 |
container_start_page | 486 |
container_title | Journal of Systems and Control Engineering |
container_volume | 226 |
creator | Tenoutit, M Maamri, N Trigeassou, J-C |
description | A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique. |
doi_str_mv | 10.1177/0959651811423616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323222376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0959651811423616</sage_id><sourcerecordid>2620022341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4306b9480f3b78beb75ff09413c2b621802f71a5ba134ca81ec94c9b9c72c2263</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouK7ePRZPeqjmq_k4yqKusOBlPYckJmuX2KxJu-LN_-A_9JfYWlEQzGGSmfeZlwwDwDGC5whxfgFlJVmFBEIUE4bYDphgSFFJ-rALJoNcDvo-OMh5DfsjJJ8AveyaulkV0Re6aNxLYYPOeUhTNF1uC5-0bevY6FDG9OBSsUlxE9NY-nh7r5vWrdLXs1frrW7rrStsbNoUQ3ApH4I9r0N2R9_3FNxfXy1n83Jxd3M7u1yUlvCqLSmBzEgqoCeGC-MMr7yHkiJisWEYCYg9R7oyGhFqtUDOSmqlkZZjizEjU3A2-j7qoDapftLpVUVdq_nlQg01SDBkDIst6tnTke2Hee5cbtVTna0LQTcudlkhggnGmPDB9uQPuo5d6mfPSlZQCgkF7SE4QjbFnJPzPx9AUA3rUX_X07eUY0vWK_fr-S__Cd0NkKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>950989084</pqid></control><display><type>article</type><title>Tuning of a new class of robust fractional-order proportional–integral–derivative controllers</title><source>SAGE Complete A-Z List</source><creator>Tenoutit, M ; Maamri, N ; Trigeassou, J-C</creator><creatorcontrib>Tenoutit, M ; Maamri, N ; Trigeassou, J-C</creatorcontrib><description>A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique.</description><identifier>ISSN: 0959-6518</identifier><identifier>EISSN: 2041-3041</identifier><identifier>DOI: 10.1177/0959651811423616</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Closed loop systems ; Computer Science ; Controllers ; Derivatives ; Dynamical systems ; Dynamics ; Guidelines ; Mathematical models ; Mechanical engineering ; Proportional integral derivative ; Simulation ; Tuning</subject><ispartof>Journal of Systems and Control Engineering, 2012-04, Vol.226 (4), p.486-496</ispartof><rights>Authors 2011</rights><rights>Copyright SAGE PUBLICATIONS, INC. Apr 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4306b9480f3b78beb75ff09413c2b621802f71a5ba134ca81ec94c9b9c72c2263</citedby><cites>FETCH-LOGICAL-c375t-4306b9480f3b78beb75ff09413c2b621802f71a5ba134ca81ec94c9b9c72c2263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0959651811423616$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0959651811423616$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,885,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03206628$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tenoutit, M</creatorcontrib><creatorcontrib>Maamri, N</creatorcontrib><creatorcontrib>Trigeassou, J-C</creatorcontrib><title>Tuning of a new class of robust fractional-order proportional–integral–derivative controllers</title><title>Journal of Systems and Control Engineering</title><description>A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique.</description><subject>Closed loop systems</subject><subject>Computer Science</subject><subject>Controllers</subject><subject>Derivatives</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Guidelines</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Proportional integral derivative</subject><subject>Simulation</subject><subject>Tuning</subject><issn>0959-6518</issn><issn>2041-3041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhoMouK7ePRZPeqjmq_k4yqKusOBlPYckJmuX2KxJu-LN_-A_9JfYWlEQzGGSmfeZlwwDwDGC5whxfgFlJVmFBEIUE4bYDphgSFFJ-rALJoNcDvo-OMh5DfsjJJ8AveyaulkV0Re6aNxLYYPOeUhTNF1uC5-0bevY6FDG9OBSsUlxE9NY-nh7r5vWrdLXs1frrW7rrStsbNoUQ3ApH4I9r0N2R9_3FNxfXy1n83Jxd3M7u1yUlvCqLSmBzEgqoCeGC-MMr7yHkiJisWEYCYg9R7oyGhFqtUDOSmqlkZZjizEjU3A2-j7qoDapftLpVUVdq_nlQg01SDBkDIst6tnTke2Hee5cbtVTna0LQTcudlkhggnGmPDB9uQPuo5d6mfPSlZQCgkF7SE4QjbFnJPzPx9AUA3rUX_X07eUY0vWK_fr-S__Cd0NkKM</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Tenoutit, M</creator><creator>Maamri, N</creator><creator>Trigeassou, J-C</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20120401</creationdate><title>Tuning of a new class of robust fractional-order proportional–integral–derivative controllers</title><author>Tenoutit, M ; Maamri, N ; Trigeassou, J-C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4306b9480f3b78beb75ff09413c2b621802f71a5ba134ca81ec94c9b9c72c2263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Closed loop systems</topic><topic>Computer Science</topic><topic>Controllers</topic><topic>Derivatives</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Guidelines</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Proportional integral derivative</topic><topic>Simulation</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenoutit, M</creatorcontrib><creatorcontrib>Maamri, N</creatorcontrib><creatorcontrib>Trigeassou, J-C</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Systems and Control Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenoutit, M</au><au>Maamri, N</au><au>Trigeassou, J-C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning of a new class of robust fractional-order proportional–integral–derivative controllers</atitle><jtitle>Journal of Systems and Control Engineering</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>226</volume><issue>4</issue><spage>486</spage><epage>496</epage><pages>486-496</pages><issn>0959-6518</issn><eissn>2041-3041</eissn><abstract>A new class of fractional proportional–integral (PI) and PI–derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0959651811423616</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-6518 |
ispartof | Journal of Systems and Control Engineering, 2012-04, Vol.226 (4), p.486-496 |
issn | 0959-6518 2041-3041 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323222376 |
source | SAGE Complete A-Z List |
subjects | Closed loop systems Computer Science Controllers Derivatives Dynamical systems Dynamics Guidelines Mathematical models Mechanical engineering Proportional integral derivative Simulation Tuning |
title | Tuning of a new class of robust fractional-order proportional–integral–derivative controllers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20of%20a%20new%20class%20of%20robust%20fractional-order%20proportional%E2%80%93integral%E2%80%93derivative%20controllers&rft.jtitle=Journal%20of%20Systems%20and%20Control%20Engineering&rft.au=Tenoutit,%20M&rft.date=2012-04-01&rft.volume=226&rft.issue=4&rft.spage=486&rft.epage=496&rft.pages=486-496&rft.issn=0959-6518&rft.eissn=2041-3041&rft_id=info:doi/10.1177/0959651811423616&rft_dat=%3Cproquest_hal_p%3E2620022341%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=950989084&rft_id=info:pmid/&rft_sage_id=10.1177_0959651811423616&rfr_iscdi=true |