Controllability Results for Nonlinear Fractional-Order Dynamical Systems
This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1< α
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2013, Vol.156 (1), p.33-44 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Journal of optimization theory and applications |
container_volume | 156 |
creator | Balachandran, K. Govindaraj, V. Rodríguez-Germa, L. Trujillo, J. J. |
description | This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1<
α |
doi_str_mv | 10.1007/s10957-012-0212-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323219164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323219164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-802dab373c9915d69a5fc5aa7ca09fdb702f902ad97e1fffb1736885ad080dc03</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuCGzfVm6RtkqWMjiMMDvhYhzRNpEPajEm76L83Q12I4ObezXcOnA-hKwy3GIDdRQyiZDlgkgNJpzxCC1wymhPO-DFaABCSU0LFKTqLcQcAgrNigdZL3w_BO6fq1rXDlL2aOLohZtaH7MX3ru2NCtkqKD20vlcu34bGhOxh6lXXauWytykOposX6MQqF83lzz9HH6vH9-U632yfnpf3m1zTQgw5B9KomjKqhcBlUwlVWl0qxbQCYZuaAbECiGoEM9haW2NGK85L1QCHRgM9Rzdz7z74r9HEQXZt1CYN6I0fo8RpJMECV0VCr_-gOz-GtCFRhFeCUihYovBM6eBjDMbKfWg7FSaJQR7cytmtTG7lwa0sU4bMmZjY_tOEX83_hr4B-3t8FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286933047</pqid></control><display><type>article</type><title>Controllability Results for Nonlinear Fractional-Order Dynamical Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Balachandran, K. ; Govindaraj, V. ; Rodríguez-Germa, L. ; Trujillo, J. J.</creator><creatorcontrib>Balachandran, K. ; Govindaraj, V. ; Rodríguez-Germa, L. ; Trujillo, J. J.</creatorcontrib><description>This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1<
α
<2 in finite dimensional spaces. The main tools are the Mittag–Leffler matrix function and the Schaefer’s fixed-point theorem. An example is provided to illustrate the theory.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-012-0212-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Control theory ; Controllability ; Differential equations ; Dynamical systems ; Engineering ; Hypotheses ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Operations Research/Decision Theory ; Optimization ; Studies ; Theorems ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2013, Vol.156 (1), p.33-44</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-802dab373c9915d69a5fc5aa7ca09fdb702f902ad97e1fffb1736885ad080dc03</citedby><cites>FETCH-LOGICAL-c349t-802dab373c9915d69a5fc5aa7ca09fdb702f902ad97e1fffb1736885ad080dc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-012-0212-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-012-0212-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Balachandran, K.</creatorcontrib><creatorcontrib>Govindaraj, V.</creatorcontrib><creatorcontrib>Rodríguez-Germa, L.</creatorcontrib><creatorcontrib>Trujillo, J. J.</creatorcontrib><title>Controllability Results for Nonlinear Fractional-Order Dynamical Systems</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1<
α
<2 in finite dimensional spaces. The main tools are the Mittag–Leffler matrix function and the Schaefer’s fixed-point theorem. An example is provided to illustrate the theory.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control theory</subject><subject>Controllability</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Hypotheses</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theorems</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLuCGzfVm6RtkqWMjiMMDvhYhzRNpEPajEm76L83Q12I4ObezXcOnA-hKwy3GIDdRQyiZDlgkgNJpzxCC1wymhPO-DFaABCSU0LFKTqLcQcAgrNigdZL3w_BO6fq1rXDlL2aOLohZtaH7MX3ru2NCtkqKD20vlcu34bGhOxh6lXXauWytykOposX6MQqF83lzz9HH6vH9-U632yfnpf3m1zTQgw5B9KomjKqhcBlUwlVWl0qxbQCYZuaAbECiGoEM9haW2NGK85L1QCHRgM9Rzdz7z74r9HEQXZt1CYN6I0fo8RpJMECV0VCr_-gOz-GtCFRhFeCUihYovBM6eBjDMbKfWg7FSaJQR7cytmtTG7lwa0sU4bMmZjY_tOEX83_hr4B-3t8FA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Balachandran, K.</creator><creator>Govindaraj, V.</creator><creator>Rodríguez-Germa, L.</creator><creator>Trujillo, J. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2013</creationdate><title>Controllability Results for Nonlinear Fractional-Order Dynamical Systems</title><author>Balachandran, K. ; Govindaraj, V. ; Rodríguez-Germa, L. ; Trujillo, J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-802dab373c9915d69a5fc5aa7ca09fdb702f902ad97e1fffb1736885ad080dc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control theory</topic><topic>Controllability</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Hypotheses</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theorems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balachandran, K.</creatorcontrib><creatorcontrib>Govindaraj, V.</creatorcontrib><creatorcontrib>Rodríguez-Germa, L.</creatorcontrib><creatorcontrib>Trujillo, J. J.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balachandran, K.</au><au>Govindaraj, V.</au><au>Rodríguez-Germa, L.</au><au>Trujillo, J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllability Results for Nonlinear Fractional-Order Dynamical Systems</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2013</date><risdate>2013</risdate><volume>156</volume><issue>1</issue><spage>33</spage><epage>44</epage><pages>33-44</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>This paper establishes a set of sufficient conditions for the controllability of nonlinear fractional dynamical system of order 1<
α
<2 in finite dimensional spaces. The main tools are the Mittag–Leffler matrix function and the Schaefer’s fixed-point theorem. An example is provided to illustrate the theory.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-012-0212-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2013, Vol.156 (1), p.33-44 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323219164 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Control theory Controllability Differential equations Dynamical systems Engineering Hypotheses Mathematical analysis Mathematics Mathematics and Statistics Nonlinearity Operations Research/Decision Theory Optimization Studies Theorems Theory of Computation |
title | Controllability Results for Nonlinear Fractional-Order Dynamical Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllability%20Results%20for%20Nonlinear%20Fractional-Order%20Dynamical%20Systems&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Balachandran,%20K.&rft.date=2013&rft.volume=156&rft.issue=1&rft.spage=33&rft.epage=44&rft.pages=33-44&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-012-0212-5&rft_dat=%3Cproquest_cross%3E1323219164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286933047&rft_id=info:pmid/&rfr_iscdi=true |