Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components
Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5000104-5000104 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5000104 |
---|---|
container_issue | 3 |
container_start_page | 5000104 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 23 |
creator | Kaufmann, Benjamin Dreier, Sebastian Haberstroh, Christoph Grobmann, Steffen |
description | Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software. |
doi_str_mv | 10.1109/TASC.2012.2234191 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323217087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323217087</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_13232170873</originalsourceid><addsrcrecordid>eNqVi0FOwzAQRS0EEoVyAHazZJPgcWI1XaIIFKTSDdlXbjVpAo4neBzB8cmCC7B6T3r_K3WPOkfU28f26b3OjUaTG1OUuMULtUJrq8xYtJeLa4tZtbRrdSPyoTWWVWlX6vQaEp2jSwMH4A76I__Abg8G3mafhql3QtCQS9BGF6SjCMuDoe0pjs7DntI3x0-BjiM0w7mHeo6RQoKax4nDYrJWV53zQnd_vFUPL89t3WRT5K-ZJB3GQU7kvQvEsxywMIXBja42xT-mv7VOT98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323217087</pqid></control><display><type>article</type><title>Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components</title><source>IEEE Electronic Library (IEL)</source><creator>Kaufmann, Benjamin ; Dreier, Sebastian ; Haberstroh, Christoph ; Grobmann, Steffen</creator><creatorcontrib>Kaufmann, Benjamin ; Dreier, Sebastian ; Haberstroh, Christoph ; Grobmann, Steffen</creatorcontrib><description>Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2234191</identifier><language>eng</language><subject>Computer programs ; Computer simulation ; Cooling ; Density ; Heat transfer ; High current ; Mathematical models ; Networks</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5000104-5000104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kaufmann, Benjamin</creatorcontrib><creatorcontrib>Dreier, Sebastian</creatorcontrib><creatorcontrib>Haberstroh, Christoph</creatorcontrib><creatorcontrib>Grobmann, Steffen</creatorcontrib><title>Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components</title><title>IEEE transactions on applied superconductivity</title><description>Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software.</description><subject>Computer programs</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Density</subject><subject>Heat transfer</subject><subject>High current</subject><subject>Mathematical models</subject><subject>Networks</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVi0FOwzAQRS0EEoVyAHazZJPgcWI1XaIIFKTSDdlXbjVpAo4neBzB8cmCC7B6T3r_K3WPOkfU28f26b3OjUaTG1OUuMULtUJrq8xYtJeLa4tZtbRrdSPyoTWWVWlX6vQaEp2jSwMH4A76I__Abg8G3mafhql3QtCQS9BGF6SjCMuDoe0pjs7DntI3x0-BjiM0w7mHeo6RQoKax4nDYrJWV53zQnd_vFUPL89t3WRT5K-ZJB3GQU7kvQvEsxywMIXBja42xT-mv7VOT98</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Kaufmann, Benjamin</creator><creator>Dreier, Sebastian</creator><creator>Haberstroh, Christoph</creator><creator>Grobmann, Steffen</creator><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130601</creationdate><title>Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components</title><author>Kaufmann, Benjamin ; Dreier, Sebastian ; Haberstroh, Christoph ; Grobmann, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_13232170873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer programs</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Density</topic><topic>Heat transfer</topic><topic>High current</topic><topic>Mathematical models</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaufmann, Benjamin</creatorcontrib><creatorcontrib>Dreier, Sebastian</creatorcontrib><creatorcontrib>Haberstroh, Christoph</creatorcontrib><creatorcontrib>Grobmann, Steffen</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaufmann, Benjamin</au><au>Dreier, Sebastian</au><au>Haberstroh, Christoph</au><au>Grobmann, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>5000104</spage><epage>5000104</epage><pages>5000104-5000104</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><abstract>Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software.</abstract><doi>10.1109/TASC.2012.2234191</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5000104-5000104 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323217087 |
source | IEEE Electronic Library (IEL) |
subjects | Computer programs Computer simulation Cooling Density Heat transfer High current Mathematical models Networks |
title | Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20hbox%20LN%202%20Multiphase%20Heat%20Transfer%20Into%20Thermal%20Networks%20for%20High%20Current%20Components&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kaufmann,%20Benjamin&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=5000104&rft.epage=5000104&rft.pages=5000104-5000104&rft.issn=1051-8223&rft.eissn=1558-2515&rft_id=info:doi/10.1109/TASC.2012.2234191&rft_dat=%3Cproquest%3E1323217087%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323217087&rft_id=info:pmid/&rfr_iscdi=true |