Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components

Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5000104-5000104
Hauptverfasser: Kaufmann, Benjamin, Dreier, Sebastian, Haberstroh, Christoph, Grobmann, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5000104
container_issue 3
container_start_page 5000104
container_title IEEE transactions on applied superconductivity
container_volume 23
creator Kaufmann, Benjamin
Dreier, Sebastian
Haberstroh, Christoph
Grobmann, Steffen
description Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software.
doi_str_mv 10.1109/TASC.2012.2234191
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323217087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323217087</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_13232170873</originalsourceid><addsrcrecordid>eNqVi0FOwzAQRS0EEoVyAHazZJPgcWI1XaIIFKTSDdlXbjVpAo4neBzB8cmCC7B6T3r_K3WPOkfU28f26b3OjUaTG1OUuMULtUJrq8xYtJeLa4tZtbRrdSPyoTWWVWlX6vQaEp2jSwMH4A76I__Abg8G3mafhql3QtCQS9BGF6SjCMuDoe0pjs7DntI3x0-BjiM0w7mHeo6RQoKax4nDYrJWV53zQnd_vFUPL89t3WRT5K-ZJB3GQU7kvQvEsxywMIXBja42xT-mv7VOT98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323217087</pqid></control><display><type>article</type><title>Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components</title><source>IEEE Electronic Library (IEL)</source><creator>Kaufmann, Benjamin ; Dreier, Sebastian ; Haberstroh, Christoph ; Grobmann, Steffen</creator><creatorcontrib>Kaufmann, Benjamin ; Dreier, Sebastian ; Haberstroh, Christoph ; Grobmann, Steffen</creatorcontrib><description>Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2234191</identifier><language>eng</language><subject>Computer programs ; Computer simulation ; Cooling ; Density ; Heat transfer ; High current ; Mathematical models ; Networks</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5000104-5000104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kaufmann, Benjamin</creatorcontrib><creatorcontrib>Dreier, Sebastian</creatorcontrib><creatorcontrib>Haberstroh, Christoph</creatorcontrib><creatorcontrib>Grobmann, Steffen</creatorcontrib><title>Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components</title><title>IEEE transactions on applied superconductivity</title><description>Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software.</description><subject>Computer programs</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Density</subject><subject>Heat transfer</subject><subject>High current</subject><subject>Mathematical models</subject><subject>Networks</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVi0FOwzAQRS0EEoVyAHazZJPgcWI1XaIIFKTSDdlXbjVpAo4neBzB8cmCC7B6T3r_K3WPOkfU28f26b3OjUaTG1OUuMULtUJrq8xYtJeLa4tZtbRrdSPyoTWWVWlX6vQaEp2jSwMH4A76I__Abg8G3mafhql3QtCQS9BGF6SjCMuDoe0pjs7DntI3x0-BjiM0w7mHeo6RQoKax4nDYrJWV53zQnd_vFUPL89t3WRT5K-ZJB3GQU7kvQvEsxywMIXBja42xT-mv7VOT98</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Kaufmann, Benjamin</creator><creator>Dreier, Sebastian</creator><creator>Haberstroh, Christoph</creator><creator>Grobmann, Steffen</creator><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130601</creationdate><title>Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components</title><author>Kaufmann, Benjamin ; Dreier, Sebastian ; Haberstroh, Christoph ; Grobmann, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_13232170873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer programs</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Density</topic><topic>Heat transfer</topic><topic>High current</topic><topic>Mathematical models</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaufmann, Benjamin</creatorcontrib><creatorcontrib>Dreier, Sebastian</creatorcontrib><creatorcontrib>Haberstroh, Christoph</creatorcontrib><creatorcontrib>Grobmann, Steffen</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaufmann, Benjamin</au><au>Dreier, Sebastian</au><au>Haberstroh, Christoph</au><au>Grobmann, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>5000104</spage><epage>5000104</epage><pages>5000104-5000104</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><abstract>Superconducting devices operating at liquid nitrogen hbox LN 2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software.</abstract><doi>10.1109/TASC.2012.2234191</doi></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5000104-5000104
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_1323217087
source IEEE Electronic Library (IEL)
subjects Computer programs
Computer simulation
Cooling
Density
Heat transfer
High current
Mathematical models
Networks
title Integration of hbox LN 2 Multiphase Heat Transfer Into Thermal Networks for High Current Components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20hbox%20LN%202%20Multiphase%20Heat%20Transfer%20Into%20Thermal%20Networks%20for%20High%20Current%20Components&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kaufmann,%20Benjamin&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=5000104&rft.epage=5000104&rft.pages=5000104-5000104&rft.issn=1051-8223&rft.eissn=1558-2515&rft_id=info:doi/10.1109/TASC.2012.2234191&rft_dat=%3Cproquest%3E1323217087%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323217087&rft_id=info:pmid/&rfr_iscdi=true