Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions

We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2012-08, Vol.112 (3)
Hauptverfasser: Günel, H. Y., Batov, I. E., Hardtdegen, H., Sladek, K., Winden, A., Weis, K., Panaitov, G., Grützmacher, D., Schäpers, Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 112
creator Günel, H. Y.
Batov, I. E.
Hardtdegen, H.
Sladek, K.
Winden, A.
Weis, K.
Panaitov, G.
Grützmacher, D.
Schäpers, Th
description We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. For junctions with high doping concentrations in the nanowire, Josephson supercurrent values up to 100 nA are found. Owing to the use of Nb as superconductor, the Josephson coupling persists at temperatures up to 4 K. In all junctions, the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions, a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
doi_str_mv 10.1063/1.4745024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323212981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323212981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e7ac72b612360d9f9978561315c2b0086d8a14e707fa185de41cbb04a17bd1233</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0EEqUw8AcZYUjznp3E9lhVUIqqMgCzZTuOSJXawU6E-HuK2uku557hEHKPsECoWYGLkpcV0PKCzBCEzHlVwSWZAVDMheTymtyktAdAFEzOCH-fBhftFKPzY9b5bGeKjV-m3Gsffrroip3JXkNyw1cKPttP3o5d8OmWXLW6T-7uvHPy-fz0sXrJt2_rzWq5zS2r2Zg7ri2npkbKamhkKyUXVY0MK0sNgKgbobF0HHirUVSNK9EaA6VGbprjic3Jw8k7xPA9uTSqQ5es63vtXZiSQkYZRSoFHtHHE2pjSCm6Vg2xO-j4qxDUfxyF6hyH_QH-8VSm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323212981</pqid></control><display><type>article</type><title>Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Günel, H. Y. ; Batov, I. E. ; Hardtdegen, H. ; Sladek, K. ; Winden, A. ; Weis, K. ; Panaitov, G. ; Grützmacher, D. ; Schäpers, Th</creator><creatorcontrib>Günel, H. Y. ; Batov, I. E. ; Hardtdegen, H. ; Sladek, K. ; Winden, A. ; Weis, K. ; Panaitov, G. ; Grützmacher, D. ; Schäpers, Th</creatorcontrib><description>We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. For junctions with high doping concentrations in the nanowire, Josephson supercurrent values up to 100 nA are found. Owing to the use of Nb as superconductor, the Josephson coupling persists at temperatures up to 4 K. In all junctions, the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions, a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4745024</identifier><language>eng</language><subject>Conductance ; Electric potential ; Fluctuation ; Josephson junctions ; Magnetic fields ; Nanowires ; Niobium ; Superconductivity</subject><ispartof>Journal of applied physics, 2012-08, Vol.112 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e7ac72b612360d9f9978561315c2b0086d8a14e707fa185de41cbb04a17bd1233</citedby><cites>FETCH-LOGICAL-c363t-e7ac72b612360d9f9978561315c2b0086d8a14e707fa185de41cbb04a17bd1233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Günel, H. Y.</creatorcontrib><creatorcontrib>Batov, I. E.</creatorcontrib><creatorcontrib>Hardtdegen, H.</creatorcontrib><creatorcontrib>Sladek, K.</creatorcontrib><creatorcontrib>Winden, A.</creatorcontrib><creatorcontrib>Weis, K.</creatorcontrib><creatorcontrib>Panaitov, G.</creatorcontrib><creatorcontrib>Grützmacher, D.</creatorcontrib><creatorcontrib>Schäpers, Th</creatorcontrib><title>Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions</title><title>Journal of applied physics</title><description>We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. For junctions with high doping concentrations in the nanowire, Josephson supercurrent values up to 100 nA are found. Owing to the use of Nb as superconductor, the Josephson coupling persists at temperatures up to 4 K. In all junctions, the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions, a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.</description><subject>Conductance</subject><subject>Electric potential</subject><subject>Fluctuation</subject><subject>Josephson junctions</subject><subject>Magnetic fields</subject><subject>Nanowires</subject><subject>Niobium</subject><subject>Superconductivity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURS0EEqUw8AcZYUjznp3E9lhVUIqqMgCzZTuOSJXawU6E-HuK2uku557hEHKPsECoWYGLkpcV0PKCzBCEzHlVwSWZAVDMheTymtyktAdAFEzOCH-fBhftFKPzY9b5bGeKjV-m3Gsffrroip3JXkNyw1cKPttP3o5d8OmWXLW6T-7uvHPy-fz0sXrJt2_rzWq5zS2r2Zg7ri2npkbKamhkKyUXVY0MK0sNgKgbobF0HHirUVSNK9EaA6VGbprjic3Jw8k7xPA9uTSqQ5es63vtXZiSQkYZRSoFHtHHE2pjSCm6Vg2xO-j4qxDUfxyF6hyH_QH-8VSm</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Günel, H. Y.</creator><creator>Batov, I. E.</creator><creator>Hardtdegen, H.</creator><creator>Sladek, K.</creator><creator>Winden, A.</creator><creator>Weis, K.</creator><creator>Panaitov, G.</creator><creator>Grützmacher, D.</creator><creator>Schäpers, Th</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120801</creationdate><title>Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions</title><author>Günel, H. Y. ; Batov, I. E. ; Hardtdegen, H. ; Sladek, K. ; Winden, A. ; Weis, K. ; Panaitov, G. ; Grützmacher, D. ; Schäpers, Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e7ac72b612360d9f9978561315c2b0086d8a14e707fa185de41cbb04a17bd1233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Conductance</topic><topic>Electric potential</topic><topic>Fluctuation</topic><topic>Josephson junctions</topic><topic>Magnetic fields</topic><topic>Nanowires</topic><topic>Niobium</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Günel, H. Y.</creatorcontrib><creatorcontrib>Batov, I. E.</creatorcontrib><creatorcontrib>Hardtdegen, H.</creatorcontrib><creatorcontrib>Sladek, K.</creatorcontrib><creatorcontrib>Winden, A.</creatorcontrib><creatorcontrib>Weis, K.</creatorcontrib><creatorcontrib>Panaitov, G.</creatorcontrib><creatorcontrib>Grützmacher, D.</creatorcontrib><creatorcontrib>Schäpers, Th</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Günel, H. Y.</au><au>Batov, I. E.</au><au>Hardtdegen, H.</au><au>Sladek, K.</au><au>Winden, A.</au><au>Weis, K.</au><au>Panaitov, G.</au><au>Grützmacher, D.</au><au>Schäpers, Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions</atitle><jtitle>Journal of applied physics</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>112</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. For junctions with high doping concentrations in the nanowire, Josephson supercurrent values up to 100 nA are found. Owing to the use of Nb as superconductor, the Josephson coupling persists at temperatures up to 4 K. In all junctions, the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions, a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.</abstract><doi>10.1063/1.4745024</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2012-08, Vol.112 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_1323212981
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Conductance
Electric potential
Fluctuation
Josephson junctions
Magnetic fields
Nanowires
Niobium
Superconductivity
title Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercurrent%20in%20Nb/InAs-nanowire/Nb%20Josephson%20junctions&rft.jtitle=Journal%20of%20applied%20physics&rft.au=G%C3%BCnel,%20H.%20Y.&rft.date=2012-08-01&rft.volume=112&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4745024&rft_dat=%3Cproquest_cross%3E1323212981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323212981&rft_id=info:pmid/&rfr_iscdi=true