Live and learn from mistakes: A lightweight system for document classification

► Text processing. ► Clusterheads leashed to class centroids. ► Online learning with negative feedback. ► A lightweight well-performing system for online document classification is proposed. We present a Life-Long Learning from Mistakes (3LM) algorithm for document classification, which could be use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management 2013-01, Vol.49 (1), p.83-98
Hauptverfasser: Borodin, Yevgen, Polishchuk, Valentin, Mahmud, Jalal, Ramakrishnan, I.V., Stent, Amanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 83
container_title Information processing & management
container_volume 49
creator Borodin, Yevgen
Polishchuk, Valentin
Mahmud, Jalal
Ramakrishnan, I.V.
Stent, Amanda
description ► Text processing. ► Clusterheads leashed to class centroids. ► Online learning with negative feedback. ► A lightweight well-performing system for online document classification is proposed. We present a Life-Long Learning from Mistakes (3LM) algorithm for document classification, which could be used in various scenarios such as spam filtering, blog classification, and web resource categorization. We extend the ideas of online clustering and batch-mode centroid-based classification to online learning with negative feedback. The 3LM is a competitive learning algorithm, which avoids over-smoothing, characteristic of the centroid-based classifiers, by using a different class representative, which we call clusterhead. The clusterheads competing for vector-space dominance are drawn toward misclassified documents, eventually bringing the model to a “balanced state” for a fixed distribution of documents. Subsequently, the clusterheads oscillate between the misclassified documents, heuristically minimizing the rate of misclassifications, an NP-complete problem. Further, the 3LM algorithm prevents over-fitting by “leashing” the clusterheads to their respective centroids. A clusterhead provably converges if its class can be separated by a hyper-plane from all other classes. Lifelong learning with fixed learning rate allows 3LM to adapt to possibly changing distribution of the data and continually learn and unlearn document classes. We report on our experiments, which demonstrate high accuracy of document classification on Reuters21578, OHSUMED, and TREC07p-spam datasets. The 3LM algorithm did not show over-fitting, while consistently outperforming centroid-based, Naïve Bayes, C4.5, AdaBoost, kNN, and SVM whose accuracy had been reported on the same three corpora.
doi_str_mv 10.1016/j.ipm.2012.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323210039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306457312000179</els_id><sourcerecordid>1323210039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-bb8a7de9ceb0692ecc9d3e252ff743a614cb50c47a1d586964c7a285d81ea0d33</originalsourceid><addsrcrecordid>eNqFkU1vFDEMhqMKpC6FH8AtEkLiMovzMZkMnKoKaKUVXNpzlHU8kGVmsiSzrfrvyWorDhxAsuzLY_u1X8ZeC1gLEOb9bh3301qCkGuoAeKMrYTtVNOqTjxjK1BgGt126py9KGUHALoVcsW-buI9cT8HPpLPMx9ymvgUy-J_UvnAL_kYv_9YHuiYeXksC018SJmHhIeJ5oXj6EuJQ0S_xDS_ZM8HPxZ69VQv2N3nT7dX183m25ebq8tNg1qKpdlure8C9UhbML0kxD4okq0chk4rb4TGbQuoOy9Ca01vNHZe2jZYQR6CUhfs3WnuPqdfByqLq5qRxtHPlA7FCSWVFACq_z8qrTJGgzUVffMXukuHPNdDKgW2axVYWSlxojCnUjINbp_j5POjE-COZridq2a4oxkOaoCoPW-fJvuCfhyynzGWP43SGFu16sp9PHFUn3cfKbuCkWakEDPh4kKK_9jyG7GkndE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1208753082</pqid></control><display><type>article</type><title>Live and learn from mistakes: A lightweight system for document classification</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Borodin, Yevgen ; Polishchuk, Valentin ; Mahmud, Jalal ; Ramakrishnan, I.V. ; Stent, Amanda</creator><creatorcontrib>Borodin, Yevgen ; Polishchuk, Valentin ; Mahmud, Jalal ; Ramakrishnan, I.V. ; Stent, Amanda</creatorcontrib><description>► Text processing. ► Clusterheads leashed to class centroids. ► Online learning with negative feedback. ► A lightweight well-performing system for online document classification is proposed. We present a Life-Long Learning from Mistakes (3LM) algorithm for document classification, which could be used in various scenarios such as spam filtering, blog classification, and web resource categorization. We extend the ideas of online clustering and batch-mode centroid-based classification to online learning with negative feedback. The 3LM is a competitive learning algorithm, which avoids over-smoothing, characteristic of the centroid-based classifiers, by using a different class representative, which we call clusterhead. The clusterheads competing for vector-space dominance are drawn toward misclassified documents, eventually bringing the model to a “balanced state” for a fixed distribution of documents. Subsequently, the clusterheads oscillate between the misclassified documents, heuristically minimizing the rate of misclassifications, an NP-complete problem. Further, the 3LM algorithm prevents over-fitting by “leashing” the clusterheads to their respective centroids. A clusterhead provably converges if its class can be separated by a hyper-plane from all other classes. Lifelong learning with fixed learning rate allows 3LM to adapt to possibly changing distribution of the data and continually learn and unlearn document classes. We report on our experiments, which demonstrate high accuracy of document classification on Reuters21578, OHSUMED, and TREC07p-spam datasets. The 3LM algorithm did not show over-fitting, while consistently outperforming centroid-based, Naïve Bayes, C4.5, AdaBoost, kNN, and SVM whose accuracy had been reported on the same three corpora.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2012.02.001</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>3LM ; Accuracy ; Algorithms ; Artificial intelligence ; Automatic classification ; Centroid ; Classification ; Classifier ; Clusterhead ; Clusters ; Distance learning ; Document management ; Documents ; Errors ; Exact sciences and technology ; Heuristic ; Information and communication sciences ; Information processing ; Information processing and retrieval ; Information retrieval systems. Information and document management system ; Information retrieval. Man machine relationship ; Information science. Documentation ; Learning ; Lifelong ; Lifelong learning ; On-line systems ; Online ; Research process. Evaluation ; Sciences and techniques of general use ; Studies ; Text processing</subject><ispartof>Information processing &amp; management, 2013-01, Vol.49 (1), p.83-98</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-bb8a7de9ceb0692ecc9d3e252ff743a614cb50c47a1d586964c7a285d81ea0d33</citedby><cites>FETCH-LOGICAL-c421t-bb8a7de9ceb0692ecc9d3e252ff743a614cb50c47a1d586964c7a285d81ea0d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipm.2012.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,4012,27906,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26680394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borodin, Yevgen</creatorcontrib><creatorcontrib>Polishchuk, Valentin</creatorcontrib><creatorcontrib>Mahmud, Jalal</creatorcontrib><creatorcontrib>Ramakrishnan, I.V.</creatorcontrib><creatorcontrib>Stent, Amanda</creatorcontrib><title>Live and learn from mistakes: A lightweight system for document classification</title><title>Information processing &amp; management</title><description>► Text processing. ► Clusterheads leashed to class centroids. ► Online learning with negative feedback. ► A lightweight well-performing system for online document classification is proposed. We present a Life-Long Learning from Mistakes (3LM) algorithm for document classification, which could be used in various scenarios such as spam filtering, blog classification, and web resource categorization. We extend the ideas of online clustering and batch-mode centroid-based classification to online learning with negative feedback. The 3LM is a competitive learning algorithm, which avoids over-smoothing, characteristic of the centroid-based classifiers, by using a different class representative, which we call clusterhead. The clusterheads competing for vector-space dominance are drawn toward misclassified documents, eventually bringing the model to a “balanced state” for a fixed distribution of documents. Subsequently, the clusterheads oscillate between the misclassified documents, heuristically minimizing the rate of misclassifications, an NP-complete problem. Further, the 3LM algorithm prevents over-fitting by “leashing” the clusterheads to their respective centroids. A clusterhead provably converges if its class can be separated by a hyper-plane from all other classes. Lifelong learning with fixed learning rate allows 3LM to adapt to possibly changing distribution of the data and continually learn and unlearn document classes. We report on our experiments, which demonstrate high accuracy of document classification on Reuters21578, OHSUMED, and TREC07p-spam datasets. The 3LM algorithm did not show over-fitting, while consistently outperforming centroid-based, Naïve Bayes, C4.5, AdaBoost, kNN, and SVM whose accuracy had been reported on the same three corpora.</description><subject>3LM</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automatic classification</subject><subject>Centroid</subject><subject>Classification</subject><subject>Classifier</subject><subject>Clusterhead</subject><subject>Clusters</subject><subject>Distance learning</subject><subject>Document management</subject><subject>Documents</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Information and communication sciences</subject><subject>Information processing</subject><subject>Information processing and retrieval</subject><subject>Information retrieval systems. Information and document management system</subject><subject>Information retrieval. Man machine relationship</subject><subject>Information science. Documentation</subject><subject>Learning</subject><subject>Lifelong</subject><subject>Lifelong learning</subject><subject>On-line systems</subject><subject>Online</subject><subject>Research process. Evaluation</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Text processing</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vFDEMhqMKpC6FH8AtEkLiMovzMZkMnKoKaKUVXNpzlHU8kGVmsiSzrfrvyWorDhxAsuzLY_u1X8ZeC1gLEOb9bh3301qCkGuoAeKMrYTtVNOqTjxjK1BgGt126py9KGUHALoVcsW-buI9cT8HPpLPMx9ymvgUy-J_UvnAL_kYv_9YHuiYeXksC018SJmHhIeJ5oXj6EuJQ0S_xDS_ZM8HPxZ69VQv2N3nT7dX183m25ebq8tNg1qKpdlure8C9UhbML0kxD4okq0chk4rb4TGbQuoOy9Ca01vNHZe2jZYQR6CUhfs3WnuPqdfByqLq5qRxtHPlA7FCSWVFACq_z8qrTJGgzUVffMXukuHPNdDKgW2axVYWSlxojCnUjINbp_j5POjE-COZridq2a4oxkOaoCoPW-fJvuCfhyynzGWP43SGFu16sp9PHFUn3cfKbuCkWakEDPh4kKK_9jyG7GkndE</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Borodin, Yevgen</creator><creator>Polishchuk, Valentin</creator><creator>Mahmud, Jalal</creator><creator>Ramakrishnan, I.V.</creator><creator>Stent, Amanda</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Live and learn from mistakes: A lightweight system for document classification</title><author>Borodin, Yevgen ; Polishchuk, Valentin ; Mahmud, Jalal ; Ramakrishnan, I.V. ; Stent, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-bb8a7de9ceb0692ecc9d3e252ff743a614cb50c47a1d586964c7a285d81ea0d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3LM</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automatic classification</topic><topic>Centroid</topic><topic>Classification</topic><topic>Classifier</topic><topic>Clusterhead</topic><topic>Clusters</topic><topic>Distance learning</topic><topic>Document management</topic><topic>Documents</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Information and communication sciences</topic><topic>Information processing</topic><topic>Information processing and retrieval</topic><topic>Information retrieval systems. Information and document management system</topic><topic>Information retrieval. Man machine relationship</topic><topic>Information science. Documentation</topic><topic>Learning</topic><topic>Lifelong</topic><topic>Lifelong learning</topic><topic>On-line systems</topic><topic>Online</topic><topic>Research process. Evaluation</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Text processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, Yevgen</creatorcontrib><creatorcontrib>Polishchuk, Valentin</creatorcontrib><creatorcontrib>Mahmud, Jalal</creatorcontrib><creatorcontrib>Ramakrishnan, I.V.</creatorcontrib><creatorcontrib>Stent, Amanda</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, Yevgen</au><au>Polishchuk, Valentin</au><au>Mahmud, Jalal</au><au>Ramakrishnan, I.V.</au><au>Stent, Amanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Live and learn from mistakes: A lightweight system for document classification</atitle><jtitle>Information processing &amp; management</jtitle><date>2013-01</date><risdate>2013</risdate><volume>49</volume><issue>1</issue><spage>83</spage><epage>98</epage><pages>83-98</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>► Text processing. ► Clusterheads leashed to class centroids. ► Online learning with negative feedback. ► A lightweight well-performing system for online document classification is proposed. We present a Life-Long Learning from Mistakes (3LM) algorithm for document classification, which could be used in various scenarios such as spam filtering, blog classification, and web resource categorization. We extend the ideas of online clustering and batch-mode centroid-based classification to online learning with negative feedback. The 3LM is a competitive learning algorithm, which avoids over-smoothing, characteristic of the centroid-based classifiers, by using a different class representative, which we call clusterhead. The clusterheads competing for vector-space dominance are drawn toward misclassified documents, eventually bringing the model to a “balanced state” for a fixed distribution of documents. Subsequently, the clusterheads oscillate between the misclassified documents, heuristically minimizing the rate of misclassifications, an NP-complete problem. Further, the 3LM algorithm prevents over-fitting by “leashing” the clusterheads to their respective centroids. A clusterhead provably converges if its class can be separated by a hyper-plane from all other classes. Lifelong learning with fixed learning rate allows 3LM to adapt to possibly changing distribution of the data and continually learn and unlearn document classes. We report on our experiments, which demonstrate high accuracy of document classification on Reuters21578, OHSUMED, and TREC07p-spam datasets. The 3LM algorithm did not show over-fitting, while consistently outperforming centroid-based, Naïve Bayes, C4.5, AdaBoost, kNN, and SVM whose accuracy had been reported on the same three corpora.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2012.02.001</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4573
ispartof Information processing & management, 2013-01, Vol.49 (1), p.83-98
issn 0306-4573
1873-5371
language eng
recordid cdi_proquest_miscellaneous_1323210039
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects 3LM
Accuracy
Algorithms
Artificial intelligence
Automatic classification
Centroid
Classification
Classifier
Clusterhead
Clusters
Distance learning
Document management
Documents
Errors
Exact sciences and technology
Heuristic
Information and communication sciences
Information processing
Information processing and retrieval
Information retrieval systems. Information and document management system
Information retrieval. Man machine relationship
Information science. Documentation
Learning
Lifelong
Lifelong learning
On-line systems
Online
Research process. Evaluation
Sciences and techniques of general use
Studies
Text processing
title Live and learn from mistakes: A lightweight system for document classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Live%20and%20learn%20from%20mistakes:%20A%20lightweight%20system%20for%20document%20classification&rft.jtitle=Information%20processing%20&%20management&rft.au=Borodin,%20Yevgen&rft.date=2013-01&rft.volume=49&rft.issue=1&rft.spage=83&rft.epage=98&rft.pages=83-98&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/j.ipm.2012.02.001&rft_dat=%3Cproquest_cross%3E1323210039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1208753082&rft_id=info:pmid/&rft_els_id=S0306457312000179&rfr_iscdi=true