Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor
In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up t...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2013-07, Vol.45, p.252-259 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | |
container_start_page | 252 |
container_title | Biosensors & bioelectronics |
container_volume | 45 |
creator | Li, Bor-Ran Chen, Chien-Wei Yang, Wan-Ling Lin, Ti-Yu Pan, Chien-Yuan Chen, Yit-Tsong |
description | In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up technique, we successfully fabricated selective surface modified (SSM) SiNW-FETs with the receptors on the SiNW sensing surface only. In this approach, the strategy was to modify the SiNWs with a chemical linker of 3-aminopropyltrimethoxysilane (APTMS) prior to photolithographic fabrication of the device. The APTMS molecules modifying the SiNWs survived the harsh photolithographic processes, including coating with photoresist, washing with organic solvent, and thermal annealing. These SSM SiNW-FETs also exhibited desirable electrical characteristics such as ohmic contact and high transconductance. Using the biotin–avidin binding system, we showed that the faster response time and smaller sample requirements of the SSM SiNW-FETs, relative to the conventional AAM SiNW-FETs, clearly show that restricting the surface modification of the SiNW-FETs substantially improves their detection sensitivity. Detection with a SSM boronic acid-modified SiNW-FET of the dopamine released under high-K+ buffer stimulation from living PC12 cells also demonstrates that SiNW-FETs can serve as highly sensitive biosensors for biomedical diagnosis. In binding affinity measurements with SiNW-FETs, the dissociation constants (Kd) of the biotin–avidin and dopamine–boronic acid complexes were determined to be 15±1fM and 33±8fM, respectively.
► Using a selective surface modified nanowire transistor biosensor to improve detection sensitivity. ► Detecting avidin and dopamine in a femtomolar level. ► Monitoring the dopamine released under high-K+ buffer stimulation from living PC12 cells. |
doi_str_mv | 10.1016/j.bios.2013.02.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1322729732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566313001073</els_id><sourcerecordid>1322729732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ba42586dd71254def2e3a1bf24a34a3cb83f5f0bd7d62e64de0a80987ec90fbf3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotn78AQ-yF8HLrpOk-wVetPgFBUH0HLLZiU3Zbmqy29J_b5ZWvQkDAzPPDC8PIRcUEgo0u1kklbE-YUB5AiwBKA_ImBY5jyeMp4dkDGWaxWmW8RE58X4BADkt4ZiMwhqA52xM3u6NXdoGVd9IFzlU9rM1nbFttDHdPJKRx9aHwdp02xjbuWwV1lErW7sxDqPOybD2nXXRkCWw1p2RIy0bj-f7fko-Hh_ep8_x7PXpZXo3ixUvsi6u5ISlRVbXOWXppEbNkEtaaTaRPJSqCq5TDVWd1xnDLBAgCyiLHFUJutL8lFzv_q6c_erRd2JpvMKmkS3a3gvKGctZmXMWULZDlbPeO9Ri5cxSuq2gIAaXYiGG_GJwKYCJ4DIcXe7_99US69-TH3kBuNoD0ivZ6OBCGf_HBaSkaRG42x2HwcbaoBNeGRxEBoWqE7U1_-X4BqGElIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322729732</pqid></control><display><type>article</type><title>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Li, Bor-Ran ; Chen, Chien-Wei ; Yang, Wan-Ling ; Lin, Ti-Yu ; Pan, Chien-Yuan ; Chen, Yit-Tsong</creator><creatorcontrib>Li, Bor-Ran ; Chen, Chien-Wei ; Yang, Wan-Ling ; Lin, Ti-Yu ; Pan, Chien-Yuan ; Chen, Yit-Tsong</creatorcontrib><description>In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up technique, we successfully fabricated selective surface modified (SSM) SiNW-FETs with the receptors on the SiNW sensing surface only. In this approach, the strategy was to modify the SiNWs with a chemical linker of 3-aminopropyltrimethoxysilane (APTMS) prior to photolithographic fabrication of the device. The APTMS molecules modifying the SiNWs survived the harsh photolithographic processes, including coating with photoresist, washing with organic solvent, and thermal annealing. These SSM SiNW-FETs also exhibited desirable electrical characteristics such as ohmic contact and high transconductance. Using the biotin–avidin binding system, we showed that the faster response time and smaller sample requirements of the SSM SiNW-FETs, relative to the conventional AAM SiNW-FETs, clearly show that restricting the surface modification of the SiNW-FETs substantially improves their detection sensitivity. Detection with a SSM boronic acid-modified SiNW-FET of the dopamine released under high-K+ buffer stimulation from living PC12 cells also demonstrates that SiNW-FETs can serve as highly sensitive biosensors for biomedical diagnosis. In binding affinity measurements with SiNW-FETs, the dissociation constants (Kd) of the biotin–avidin and dopamine–boronic acid complexes were determined to be 15±1fM and 33±8fM, respectively.
► Using a selective surface modified nanowire transistor biosensor to improve detection sensitivity. ► Detecting avidin and dopamine in a femtomolar level. ► Monitoring the dopamine released under high-K+ buffer stimulation from living PC12 cells.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2013.02.009</identifier><identifier>PMID: 23500372</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Animals ; Avidin ; Biological and medical sciences ; Biosensing Techniques ; Biosensors ; Biotechnology ; Biotin ; Boronic Acids - chemistry ; Dopamine ; Dopamine - isolation & purification ; Field-effect transistor ; Fundamental and applied biological sciences. Psychology ; Methods. Procedures. Technologies ; Nanowire biosensor ; Nanowires - chemistry ; PC12 cell ; PC12 Cells ; Propylamines - chemistry ; Rats ; Selective surface modification ; Silanes - chemistry ; Silicon - chemistry ; Transistors, Electronic ; Various methods and equipments</subject><ispartof>Biosensors & bioelectronics, 2013-07, Vol.45, p.252-259</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ba42586dd71254def2e3a1bf24a34a3cb83f5f0bd7d62e64de0a80987ec90fbf3</citedby><cites>FETCH-LOGICAL-c386t-ba42586dd71254def2e3a1bf24a34a3cb83f5f0bd7d62e64de0a80987ec90fbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2013.02.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27239158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23500372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bor-Ran</creatorcontrib><creatorcontrib>Chen, Chien-Wei</creatorcontrib><creatorcontrib>Yang, Wan-Ling</creatorcontrib><creatorcontrib>Lin, Ti-Yu</creatorcontrib><creatorcontrib>Pan, Chien-Yuan</creatorcontrib><creatorcontrib>Chen, Yit-Tsong</creatorcontrib><title>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up technique, we successfully fabricated selective surface modified (SSM) SiNW-FETs with the receptors on the SiNW sensing surface only. In this approach, the strategy was to modify the SiNWs with a chemical linker of 3-aminopropyltrimethoxysilane (APTMS) prior to photolithographic fabrication of the device. The APTMS molecules modifying the SiNWs survived the harsh photolithographic processes, including coating with photoresist, washing with organic solvent, and thermal annealing. These SSM SiNW-FETs also exhibited desirable electrical characteristics such as ohmic contact and high transconductance. Using the biotin–avidin binding system, we showed that the faster response time and smaller sample requirements of the SSM SiNW-FETs, relative to the conventional AAM SiNW-FETs, clearly show that restricting the surface modification of the SiNW-FETs substantially improves their detection sensitivity. Detection with a SSM boronic acid-modified SiNW-FET of the dopamine released under high-K+ buffer stimulation from living PC12 cells also demonstrates that SiNW-FETs can serve as highly sensitive biosensors for biomedical diagnosis. In binding affinity measurements with SiNW-FETs, the dissociation constants (Kd) of the biotin–avidin and dopamine–boronic acid complexes were determined to be 15±1fM and 33±8fM, respectively.
► Using a selective surface modified nanowire transistor biosensor to improve detection sensitivity. ► Detecting avidin and dopamine in a femtomolar level. ► Monitoring the dopamine released under high-K+ buffer stimulation from living PC12 cells.</description><subject>Animals</subject><subject>Avidin</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Biotin</subject><subject>Boronic Acids - chemistry</subject><subject>Dopamine</subject><subject>Dopamine - isolation & purification</subject><subject>Field-effect transistor</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methods. Procedures. Technologies</subject><subject>Nanowire biosensor</subject><subject>Nanowires - chemistry</subject><subject>PC12 cell</subject><subject>PC12 Cells</subject><subject>Propylamines - chemistry</subject><subject>Rats</subject><subject>Selective surface modification</subject><subject>Silanes - chemistry</subject><subject>Silicon - chemistry</subject><subject>Transistors, Electronic</subject><subject>Various methods and equipments</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotn78AQ-yF8HLrpOk-wVetPgFBUH0HLLZiU3Zbmqy29J_b5ZWvQkDAzPPDC8PIRcUEgo0u1kklbE-YUB5AiwBKA_ImBY5jyeMp4dkDGWaxWmW8RE58X4BADkt4ZiMwhqA52xM3u6NXdoGVd9IFzlU9rM1nbFttDHdPJKRx9aHwdp02xjbuWwV1lErW7sxDqPOybD2nXXRkCWw1p2RIy0bj-f7fko-Hh_ep8_x7PXpZXo3ixUvsi6u5ISlRVbXOWXppEbNkEtaaTaRPJSqCq5TDVWd1xnDLBAgCyiLHFUJutL8lFzv_q6c_erRd2JpvMKmkS3a3gvKGctZmXMWULZDlbPeO9Ri5cxSuq2gIAaXYiGG_GJwKYCJ4DIcXe7_99US69-TH3kBuNoD0ivZ6OBCGf_HBaSkaRG42x2HwcbaoBNeGRxEBoWqE7U1_-X4BqGElIY</recordid><startdate>20130715</startdate><enddate>20130715</enddate><creator>Li, Bor-Ran</creator><creator>Chen, Chien-Wei</creator><creator>Yang, Wan-Ling</creator><creator>Lin, Ti-Yu</creator><creator>Pan, Chien-Yuan</creator><creator>Chen, Yit-Tsong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130715</creationdate><title>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</title><author>Li, Bor-Ran ; Chen, Chien-Wei ; Yang, Wan-Ling ; Lin, Ti-Yu ; Pan, Chien-Yuan ; Chen, Yit-Tsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ba42586dd71254def2e3a1bf24a34a3cb83f5f0bd7d62e64de0a80987ec90fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Avidin</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Biotin</topic><topic>Boronic Acids - chemistry</topic><topic>Dopamine</topic><topic>Dopamine - isolation & purification</topic><topic>Field-effect transistor</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methods. Procedures. Technologies</topic><topic>Nanowire biosensor</topic><topic>Nanowires - chemistry</topic><topic>PC12 cell</topic><topic>PC12 Cells</topic><topic>Propylamines - chemistry</topic><topic>Rats</topic><topic>Selective surface modification</topic><topic>Silanes - chemistry</topic><topic>Silicon - chemistry</topic><topic>Transistors, Electronic</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bor-Ran</creatorcontrib><creatorcontrib>Chen, Chien-Wei</creatorcontrib><creatorcontrib>Yang, Wan-Ling</creatorcontrib><creatorcontrib>Lin, Ti-Yu</creatorcontrib><creatorcontrib>Pan, Chien-Yuan</creatorcontrib><creatorcontrib>Chen, Yit-Tsong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bor-Ran</au><au>Chen, Chien-Wei</au><au>Yang, Wan-Ling</au><au>Lin, Ti-Yu</au><au>Pan, Chien-Yuan</au><au>Chen, Yit-Tsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2013-07-15</date><risdate>2013</risdate><volume>45</volume><spage>252</spage><epage>259</epage><pages>252-259</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up technique, we successfully fabricated selective surface modified (SSM) SiNW-FETs with the receptors on the SiNW sensing surface only. In this approach, the strategy was to modify the SiNWs with a chemical linker of 3-aminopropyltrimethoxysilane (APTMS) prior to photolithographic fabrication of the device. The APTMS molecules modifying the SiNWs survived the harsh photolithographic processes, including coating with photoresist, washing with organic solvent, and thermal annealing. These SSM SiNW-FETs also exhibited desirable electrical characteristics such as ohmic contact and high transconductance. Using the biotin–avidin binding system, we showed that the faster response time and smaller sample requirements of the SSM SiNW-FETs, relative to the conventional AAM SiNW-FETs, clearly show that restricting the surface modification of the SiNW-FETs substantially improves their detection sensitivity. Detection with a SSM boronic acid-modified SiNW-FET of the dopamine released under high-K+ buffer stimulation from living PC12 cells also demonstrates that SiNW-FETs can serve as highly sensitive biosensors for biomedical diagnosis. In binding affinity measurements with SiNW-FETs, the dissociation constants (Kd) of the biotin–avidin and dopamine–boronic acid complexes were determined to be 15±1fM and 33±8fM, respectively.
► Using a selective surface modified nanowire transistor biosensor to improve detection sensitivity. ► Detecting avidin and dopamine in a femtomolar level. ► Monitoring the dopamine released under high-K+ buffer stimulation from living PC12 cells.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>23500372</pmid><doi>10.1016/j.bios.2013.02.009</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2013-07, Vol.45, p.252-259 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_1322729732 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Animals Avidin Biological and medical sciences Biosensing Techniques Biosensors Biotechnology Biotin Boronic Acids - chemistry Dopamine Dopamine - isolation & purification Field-effect transistor Fundamental and applied biological sciences. Psychology Methods. Procedures. Technologies Nanowire biosensor Nanowires - chemistry PC12 cell PC12 Cells Propylamines - chemistry Rats Selective surface modification Silanes - chemistry Silicon - chemistry Transistors, Electronic Various methods and equipments |
title | Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecular%20recognition%20with%20a%20sensitivity-enhanced%20nanowire%20transistor%20biosensor&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Li,%20Bor-Ran&rft.date=2013-07-15&rft.volume=45&rft.spage=252&rft.epage=259&rft.pages=252-259&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2013.02.009&rft_dat=%3Cproquest_cross%3E1322729732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322729732&rft_id=info:pmid/23500372&rft_els_id=S0956566313001073&rfr_iscdi=true |