Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor

In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2013-07, Vol.45, p.252-259
Hauptverfasser: Li, Bor-Ran, Chen, Chien-Wei, Yang, Wan-Ling, Lin, Ti-Yu, Pan, Chien-Yuan, Chen, Yit-Tsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue
container_start_page 252
container_title Biosensors & bioelectronics
container_volume 45
creator Li, Bor-Ran
Chen, Chien-Wei
Yang, Wan-Ling
Lin, Ti-Yu
Pan, Chien-Yuan
Chen, Yit-Tsong
description In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up technique, we successfully fabricated selective surface modified (SSM) SiNW-FETs with the receptors on the SiNW sensing surface only. In this approach, the strategy was to modify the SiNWs with a chemical linker of 3-aminopropyltrimethoxysilane (APTMS) prior to photolithographic fabrication of the device. The APTMS molecules modifying the SiNWs survived the harsh photolithographic processes, including coating with photoresist, washing with organic solvent, and thermal annealing. These SSM SiNW-FETs also exhibited desirable electrical characteristics such as ohmic contact and high transconductance. Using the biotin–avidin binding system, we showed that the faster response time and smaller sample requirements of the SSM SiNW-FETs, relative to the conventional AAM SiNW-FETs, clearly show that restricting the surface modification of the SiNW-FETs substantially improves their detection sensitivity. Detection with a SSM boronic acid-modified SiNW-FET of the dopamine released under high-K+ buffer stimulation from living PC12 cells also demonstrates that SiNW-FETs can serve as highly sensitive biosensors for biomedical diagnosis. In binding affinity measurements with SiNW-FETs, the dissociation constants (Kd) of the biotin–avidin and dopamine–boronic acid complexes were determined to be 15±1fM and 33±8fM, respectively. ► Using a selective surface modified nanowire transistor biosensor to improve detection sensitivity. ► Detecting avidin and dopamine in a femtomolar level. ► Monitoring the dopamine released under high-K+ buffer stimulation from living PC12 cells.
doi_str_mv 10.1016/j.bios.2013.02.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1322729732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566313001073</els_id><sourcerecordid>1322729732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ba42586dd71254def2e3a1bf24a34a3cb83f5f0bd7d62e64de0a80987ec90fbf3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotn78AQ-yF8HLrpOk-wVetPgFBUH0HLLZiU3Zbmqy29J_b5ZWvQkDAzPPDC8PIRcUEgo0u1kklbE-YUB5AiwBKA_ImBY5jyeMp4dkDGWaxWmW8RE58X4BADkt4ZiMwhqA52xM3u6NXdoGVd9IFzlU9rM1nbFttDHdPJKRx9aHwdp02xjbuWwV1lErW7sxDqPOybD2nXXRkCWw1p2RIy0bj-f7fko-Hh_ep8_x7PXpZXo3ixUvsi6u5ISlRVbXOWXppEbNkEtaaTaRPJSqCq5TDVWd1xnDLBAgCyiLHFUJutL8lFzv_q6c_erRd2JpvMKmkS3a3gvKGctZmXMWULZDlbPeO9Ri5cxSuq2gIAaXYiGG_GJwKYCJ4DIcXe7_99US69-TH3kBuNoD0ivZ6OBCGf_HBaSkaRG42x2HwcbaoBNeGRxEBoWqE7U1_-X4BqGElIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322729732</pqid></control><display><type>article</type><title>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Li, Bor-Ran ; Chen, Chien-Wei ; Yang, Wan-Ling ; Lin, Ti-Yu ; Pan, Chien-Yuan ; Chen, Yit-Tsong</creator><creatorcontrib>Li, Bor-Ran ; Chen, Chien-Wei ; Yang, Wan-Ling ; Lin, Ti-Yu ; Pan, Chien-Yuan ; Chen, Yit-Tsong</creatorcontrib><description>In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up technique, we successfully fabricated selective surface modified (SSM) SiNW-FETs with the receptors on the SiNW sensing surface only. In this approach, the strategy was to modify the SiNWs with a chemical linker of 3-aminopropyltrimethoxysilane (APTMS) prior to photolithographic fabrication of the device. The APTMS molecules modifying the SiNWs survived the harsh photolithographic processes, including coating with photoresist, washing with organic solvent, and thermal annealing. These SSM SiNW-FETs also exhibited desirable electrical characteristics such as ohmic contact and high transconductance. Using the biotin–avidin binding system, we showed that the faster response time and smaller sample requirements of the SSM SiNW-FETs, relative to the conventional AAM SiNW-FETs, clearly show that restricting the surface modification of the SiNW-FETs substantially improves their detection sensitivity. Detection with a SSM boronic acid-modified SiNW-FET of the dopamine released under high-K+ buffer stimulation from living PC12 cells also demonstrates that SiNW-FETs can serve as highly sensitive biosensors for biomedical diagnosis. In binding affinity measurements with SiNW-FETs, the dissociation constants (Kd) of the biotin–avidin and dopamine–boronic acid complexes were determined to be 15±1fM and 33±8fM, respectively. ► Using a selective surface modified nanowire transistor biosensor to improve detection sensitivity. ► Detecting avidin and dopamine in a femtomolar level. ► Monitoring the dopamine released under high-K+ buffer stimulation from living PC12 cells.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2013.02.009</identifier><identifier>PMID: 23500372</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Animals ; Avidin ; Biological and medical sciences ; Biosensing Techniques ; Biosensors ; Biotechnology ; Biotin ; Boronic Acids - chemistry ; Dopamine ; Dopamine - isolation &amp; purification ; Field-effect transistor ; Fundamental and applied biological sciences. Psychology ; Methods. Procedures. Technologies ; Nanowire biosensor ; Nanowires - chemistry ; PC12 cell ; PC12 Cells ; Propylamines - chemistry ; Rats ; Selective surface modification ; Silanes - chemistry ; Silicon - chemistry ; Transistors, Electronic ; Various methods and equipments</subject><ispartof>Biosensors &amp; bioelectronics, 2013-07, Vol.45, p.252-259</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ba42586dd71254def2e3a1bf24a34a3cb83f5f0bd7d62e64de0a80987ec90fbf3</citedby><cites>FETCH-LOGICAL-c386t-ba42586dd71254def2e3a1bf24a34a3cb83f5f0bd7d62e64de0a80987ec90fbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2013.02.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27239158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23500372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bor-Ran</creatorcontrib><creatorcontrib>Chen, Chien-Wei</creatorcontrib><creatorcontrib>Yang, Wan-Ling</creatorcontrib><creatorcontrib>Lin, Ti-Yu</creatorcontrib><creatorcontrib>Pan, Chien-Yuan</creatorcontrib><creatorcontrib>Chen, Yit-Tsong</creatorcontrib><title>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up technique, we successfully fabricated selective surface modified (SSM) SiNW-FETs with the receptors on the SiNW sensing surface only. In this approach, the strategy was to modify the SiNWs with a chemical linker of 3-aminopropyltrimethoxysilane (APTMS) prior to photolithographic fabrication of the device. The APTMS molecules modifying the SiNWs survived the harsh photolithographic processes, including coating with photoresist, washing with organic solvent, and thermal annealing. These SSM SiNW-FETs also exhibited desirable electrical characteristics such as ohmic contact and high transconductance. Using the biotin–avidin binding system, we showed that the faster response time and smaller sample requirements of the SSM SiNW-FETs, relative to the conventional AAM SiNW-FETs, clearly show that restricting the surface modification of the SiNW-FETs substantially improves their detection sensitivity. Detection with a SSM boronic acid-modified SiNW-FET of the dopamine released under high-K+ buffer stimulation from living PC12 cells also demonstrates that SiNW-FETs can serve as highly sensitive biosensors for biomedical diagnosis. In binding affinity measurements with SiNW-FETs, the dissociation constants (Kd) of the biotin–avidin and dopamine–boronic acid complexes were determined to be 15±1fM and 33±8fM, respectively. ► Using a selective surface modified nanowire transistor biosensor to improve detection sensitivity. ► Detecting avidin and dopamine in a femtomolar level. ► Monitoring the dopamine released under high-K+ buffer stimulation from living PC12 cells.</description><subject>Animals</subject><subject>Avidin</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Biotin</subject><subject>Boronic Acids - chemistry</subject><subject>Dopamine</subject><subject>Dopamine - isolation &amp; purification</subject><subject>Field-effect transistor</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methods. Procedures. Technologies</subject><subject>Nanowire biosensor</subject><subject>Nanowires - chemistry</subject><subject>PC12 cell</subject><subject>PC12 Cells</subject><subject>Propylamines - chemistry</subject><subject>Rats</subject><subject>Selective surface modification</subject><subject>Silanes - chemistry</subject><subject>Silicon - chemistry</subject><subject>Transistors, Electronic</subject><subject>Various methods and equipments</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotn78AQ-yF8HLrpOk-wVetPgFBUH0HLLZiU3Zbmqy29J_b5ZWvQkDAzPPDC8PIRcUEgo0u1kklbE-YUB5AiwBKA_ImBY5jyeMp4dkDGWaxWmW8RE58X4BADkt4ZiMwhqA52xM3u6NXdoGVd9IFzlU9rM1nbFttDHdPJKRx9aHwdp02xjbuWwV1lErW7sxDqPOybD2nXXRkCWw1p2RIy0bj-f7fko-Hh_ep8_x7PXpZXo3ixUvsi6u5ISlRVbXOWXppEbNkEtaaTaRPJSqCq5TDVWd1xnDLBAgCyiLHFUJutL8lFzv_q6c_erRd2JpvMKmkS3a3gvKGctZmXMWULZDlbPeO9Ri5cxSuq2gIAaXYiGG_GJwKYCJ4DIcXe7_99US69-TH3kBuNoD0ivZ6OBCGf_HBaSkaRG42x2HwcbaoBNeGRxEBoWqE7U1_-X4BqGElIY</recordid><startdate>20130715</startdate><enddate>20130715</enddate><creator>Li, Bor-Ran</creator><creator>Chen, Chien-Wei</creator><creator>Yang, Wan-Ling</creator><creator>Lin, Ti-Yu</creator><creator>Pan, Chien-Yuan</creator><creator>Chen, Yit-Tsong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130715</creationdate><title>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</title><author>Li, Bor-Ran ; Chen, Chien-Wei ; Yang, Wan-Ling ; Lin, Ti-Yu ; Pan, Chien-Yuan ; Chen, Yit-Tsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ba42586dd71254def2e3a1bf24a34a3cb83f5f0bd7d62e64de0a80987ec90fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Avidin</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Biotin</topic><topic>Boronic Acids - chemistry</topic><topic>Dopamine</topic><topic>Dopamine - isolation &amp; purification</topic><topic>Field-effect transistor</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methods. Procedures. Technologies</topic><topic>Nanowire biosensor</topic><topic>Nanowires - chemistry</topic><topic>PC12 cell</topic><topic>PC12 Cells</topic><topic>Propylamines - chemistry</topic><topic>Rats</topic><topic>Selective surface modification</topic><topic>Silanes - chemistry</topic><topic>Silicon - chemistry</topic><topic>Transistors, Electronic</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bor-Ran</creatorcontrib><creatorcontrib>Chen, Chien-Wei</creatorcontrib><creatorcontrib>Yang, Wan-Ling</creatorcontrib><creatorcontrib>Lin, Ti-Yu</creatorcontrib><creatorcontrib>Pan, Chien-Yuan</creatorcontrib><creatorcontrib>Chen, Yit-Tsong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bor-Ran</au><au>Chen, Chien-Wei</au><au>Yang, Wan-Ling</au><au>Lin, Ti-Yu</au><au>Pan, Chien-Yuan</au><au>Chen, Yit-Tsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2013-07-15</date><risdate>2013</risdate><volume>45</volume><spage>252</spage><epage>259</epage><pages>252-259</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>In applications of silicon nanowire field-effect transistors (SiNW-FETs) as biosensors, the SiNW-FETs conventionally are all area modified (AAM), with receptors covering not only the minute SiNW surface area but also the relatively large surrounding substrate area. In this study, using a bottom-up technique, we successfully fabricated selective surface modified (SSM) SiNW-FETs with the receptors on the SiNW sensing surface only. In this approach, the strategy was to modify the SiNWs with a chemical linker of 3-aminopropyltrimethoxysilane (APTMS) prior to photolithographic fabrication of the device. The APTMS molecules modifying the SiNWs survived the harsh photolithographic processes, including coating with photoresist, washing with organic solvent, and thermal annealing. These SSM SiNW-FETs also exhibited desirable electrical characteristics such as ohmic contact and high transconductance. Using the biotin–avidin binding system, we showed that the faster response time and smaller sample requirements of the SSM SiNW-FETs, relative to the conventional AAM SiNW-FETs, clearly show that restricting the surface modification of the SiNW-FETs substantially improves their detection sensitivity. Detection with a SSM boronic acid-modified SiNW-FET of the dopamine released under high-K+ buffer stimulation from living PC12 cells also demonstrates that SiNW-FETs can serve as highly sensitive biosensors for biomedical diagnosis. In binding affinity measurements with SiNW-FETs, the dissociation constants (Kd) of the biotin–avidin and dopamine–boronic acid complexes were determined to be 15±1fM and 33±8fM, respectively. ► Using a selective surface modified nanowire transistor biosensor to improve detection sensitivity. ► Detecting avidin and dopamine in a femtomolar level. ► Monitoring the dopamine released under high-K+ buffer stimulation from living PC12 cells.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>23500372</pmid><doi>10.1016/j.bios.2013.02.009</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2013-07, Vol.45, p.252-259
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1322729732
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Animals
Avidin
Biological and medical sciences
Biosensing Techniques
Biosensors
Biotechnology
Biotin
Boronic Acids - chemistry
Dopamine
Dopamine - isolation & purification
Field-effect transistor
Fundamental and applied biological sciences. Psychology
Methods. Procedures. Technologies
Nanowire biosensor
Nanowires - chemistry
PC12 cell
PC12 Cells
Propylamines - chemistry
Rats
Selective surface modification
Silanes - chemistry
Silicon - chemistry
Transistors, Electronic
Various methods and equipments
title Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecular%20recognition%20with%20a%20sensitivity-enhanced%20nanowire%20transistor%20biosensor&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Li,%20Bor-Ran&rft.date=2013-07-15&rft.volume=45&rft.spage=252&rft.epage=259&rft.pages=252-259&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2013.02.009&rft_dat=%3Cproquest_cross%3E1322729732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322729732&rft_id=info:pmid/23500372&rft_els_id=S0956566313001073&rfr_iscdi=true