Detecting concept relations in clinical text: Insights from a state-of-the-art model
[Display omitted] ► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical informatics 2013-04, Vol.46 (2), p.275-285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 285 |
---|---|
container_issue | 2 |
container_start_page | 275 |
container_title | Journal of biomedical informatics |
container_volume | 46 |
creator | Zhu, Xiaodan Cherry, Colin Kiritchenko, Svetlana Martin, Joel de Bruijn, Berry |
description | [Display omitted]
► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still insufficient, while leveraging unlabeled data helps.
This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page description (appearing as a part of [5]) of a top-ranked model in the 2010 I2B2 NLP Challenge to a necessary level of details, with the belief that feature design is the most crucial factor to the success of our system and hence deserves a more detailed discussion. We present a precise quantification of the contributions of a wide variety of knowledge sources. In addition, we show the end-to-end results obtained on the noisy output of a top-ranked concept detector, which could help construct a more complete view of the state of the art in the real-world scenario. As the second major objective, we reformulate our models into a composite-kernel framework and present the best result, according to our knowledge, on the same dataset. |
doi_str_mv | 10.1016/j.jbi.2012.11.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1321792867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046412001803</els_id><sourcerecordid>1321792867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3beae88aa85dd2bc06d65e93d8f7b8777d2b7a51f7d48d30c18eca99f3351bfa3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwA1iQR5YEX9wkDkyIbwmJpcyWY1_AVRIX20Xw73FV6Mh0p9PzvtI9hJwCy4FBdbHMl63NCwZFDpAzVu2RKZS8yNhcsP3dXs0n5CiEJWMAZVkdkknBuWCV4FOyuMWIOtrxjWo3alxF6rFX0boxUDtS3dvRatXTiF_xkj6Nwb69x0A77waqaIgqYua6LL5jpnykgzPYH5ODTvUBT37njLze3y1uHrPnl4enm-vnTM-LJma8RYVCKCVKY4pWs8pUJTbciK5uRV3X6VirErrazIXhTINArZqm47yEtlN8Rs63vSvvPtYYohxs0Nj3akS3DhJ4AXVTiKpOKGxR7V0IHju58nZQ_lsCkxuZcimTTLmRKQFkkpkyZ7_163ZAs0v82UvA1RbA9OSnRS-DtpgsGuuTVGmc_af-B2vLhVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321792867</pqid></control><display><type>article</type><title>Detecting concept relations in clinical text: Insights from a state-of-the-art model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Xiaodan ; Cherry, Colin ; Kiritchenko, Svetlana ; Martin, Joel ; de Bruijn, Berry</creator><creatorcontrib>Zhu, Xiaodan ; Cherry, Colin ; Kiritchenko, Svetlana ; Martin, Joel ; de Bruijn, Berry</creatorcontrib><description>[Display omitted]
► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still insufficient, while leveraging unlabeled data helps.
This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page description (appearing as a part of [5]) of a top-ranked model in the 2010 I2B2 NLP Challenge to a necessary level of details, with the belief that feature design is the most crucial factor to the success of our system and hence deserves a more detailed discussion. We present a precise quantification of the contributions of a wide variety of knowledge sources. In addition, we show the end-to-end results obtained on the noisy output of a top-ranked concept detector, which could help construct a more complete view of the state of the art in the real-world scenario. As the second major objective, we reformulate our models into a composite-kernel framework and present the best result, according to our knowledge, on the same dataset.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2012.11.006</identifier><identifier>PMID: 23380683</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Data Mining - methods ; Databases, Factual ; Electronic Health Records ; Humans ; Natural Language Processing ; Semantics ; Text mining</subject><ispartof>Journal of biomedical informatics, 2013-04, Vol.46 (2), p.275-285</ispartof><rights>2012</rights><rights>Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3beae88aa85dd2bc06d65e93d8f7b8777d2b7a51f7d48d30c18eca99f3351bfa3</citedby><cites>FETCH-LOGICAL-c429t-3beae88aa85dd2bc06d65e93d8f7b8777d2b7a51f7d48d30c18eca99f3351bfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbi.2012.11.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23380683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaodan</creatorcontrib><creatorcontrib>Cherry, Colin</creatorcontrib><creatorcontrib>Kiritchenko, Svetlana</creatorcontrib><creatorcontrib>Martin, Joel</creatorcontrib><creatorcontrib>de Bruijn, Berry</creatorcontrib><title>Detecting concept relations in clinical text: Insights from a state-of-the-art model</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>[Display omitted]
► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still insufficient, while leveraging unlabeled data helps.
This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page description (appearing as a part of [5]) of a top-ranked model in the 2010 I2B2 NLP Challenge to a necessary level of details, with the belief that feature design is the most crucial factor to the success of our system and hence deserves a more detailed discussion. We present a precise quantification of the contributions of a wide variety of knowledge sources. In addition, we show the end-to-end results obtained on the noisy output of a top-ranked concept detector, which could help construct a more complete view of the state of the art in the real-world scenario. As the second major objective, we reformulate our models into a composite-kernel framework and present the best result, according to our knowledge, on the same dataset.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Data Mining - methods</subject><subject>Databases, Factual</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>Natural Language Processing</subject><subject>Semantics</subject><subject>Text mining</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwA1iQR5YEX9wkDkyIbwmJpcyWY1_AVRIX20Xw73FV6Mh0p9PzvtI9hJwCy4FBdbHMl63NCwZFDpAzVu2RKZS8yNhcsP3dXs0n5CiEJWMAZVkdkknBuWCV4FOyuMWIOtrxjWo3alxF6rFX0boxUDtS3dvRatXTiF_xkj6Nwb69x0A77waqaIgqYua6LL5jpnykgzPYH5ODTvUBT37njLze3y1uHrPnl4enm-vnTM-LJma8RYVCKCVKY4pWs8pUJTbciK5uRV3X6VirErrazIXhTINArZqm47yEtlN8Rs63vSvvPtYYohxs0Nj3akS3DhJ4AXVTiKpOKGxR7V0IHju58nZQ_lsCkxuZcimTTLmRKQFkkpkyZ7_163ZAs0v82UvA1RbA9OSnRS-DtpgsGuuTVGmc_af-B2vLhVc</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Zhu, Xiaodan</creator><creator>Cherry, Colin</creator><creator>Kiritchenko, Svetlana</creator><creator>Martin, Joel</creator><creator>de Bruijn, Berry</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>Detecting concept relations in clinical text: Insights from a state-of-the-art model</title><author>Zhu, Xiaodan ; Cherry, Colin ; Kiritchenko, Svetlana ; Martin, Joel ; de Bruijn, Berry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3beae88aa85dd2bc06d65e93d8f7b8777d2b7a51f7d48d30c18eca99f3351bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Data Mining - methods</topic><topic>Databases, Factual</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>Natural Language Processing</topic><topic>Semantics</topic><topic>Text mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaodan</creatorcontrib><creatorcontrib>Cherry, Colin</creatorcontrib><creatorcontrib>Kiritchenko, Svetlana</creatorcontrib><creatorcontrib>Martin, Joel</creatorcontrib><creatorcontrib>de Bruijn, Berry</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaodan</au><au>Cherry, Colin</au><au>Kiritchenko, Svetlana</au><au>Martin, Joel</au><au>de Bruijn, Berry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting concept relations in clinical text: Insights from a state-of-the-art model</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>46</volume><issue>2</issue><spage>275</spage><epage>285</epage><pages>275-285</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>[Display omitted]
► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still insufficient, while leveraging unlabeled data helps.
This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page description (appearing as a part of [5]) of a top-ranked model in the 2010 I2B2 NLP Challenge to a necessary level of details, with the belief that feature design is the most crucial factor to the success of our system and hence deserves a more detailed discussion. We present a precise quantification of the contributions of a wide variety of knowledge sources. In addition, we show the end-to-end results obtained on the noisy output of a top-ranked concept detector, which could help construct a more complete view of the state of the art in the real-world scenario. As the second major objective, we reformulate our models into a composite-kernel framework and present the best result, according to our knowledge, on the same dataset.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23380683</pmid><doi>10.1016/j.jbi.2012.11.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0464 |
ispartof | Journal of biomedical informatics, 2013-04, Vol.46 (2), p.275-285 |
issn | 1532-0464 1532-0480 |
language | eng |
recordid | cdi_proquest_miscellaneous_1321792867 |
source | MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial Intelligence Data Mining - methods Databases, Factual Electronic Health Records Humans Natural Language Processing Semantics Text mining |
title | Detecting concept relations in clinical text: Insights from a state-of-the-art model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20concept%20relations%20in%20clinical%20text:%20Insights%20from%20a%20state-of-the-art%20model&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Zhu,%20Xiaodan&rft.date=2013-04-01&rft.volume=46&rft.issue=2&rft.spage=275&rft.epage=285&rft.pages=275-285&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2012.11.006&rft_dat=%3Cproquest_cross%3E1321792867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321792867&rft_id=info:pmid/23380683&rft_els_id=S1532046412001803&rfr_iscdi=true |