Detecting concept relations in clinical text: Insights from a state-of-the-art model

[Display omitted] ► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical informatics 2013-04, Vol.46 (2), p.275-285
Hauptverfasser: Zhu, Xiaodan, Cherry, Colin, Kiritchenko, Svetlana, Martin, Joel, de Bruijn, Berry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 2
container_start_page 275
container_title Journal of biomedical informatics
container_volume 46
creator Zhu, Xiaodan
Cherry, Colin
Kiritchenko, Svetlana
Martin, Joel
de Bruijn, Berry
description [Display omitted] ► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still insufficient, while leveraging unlabeled data helps. This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page description (appearing as a part of [5]) of a top-ranked model in the 2010 I2B2 NLP Challenge to a necessary level of details, with the belief that feature design is the most crucial factor to the success of our system and hence deserves a more detailed discussion. We present a precise quantification of the contributions of a wide variety of knowledge sources. In addition, we show the end-to-end results obtained on the noisy output of a top-ranked concept detector, which could help construct a more complete view of the state of the art in the real-world scenario. As the second major objective, we reformulate our models into a composite-kernel framework and present the best result, according to our knowledge, on the same dataset.
doi_str_mv 10.1016/j.jbi.2012.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1321792867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046412001803</els_id><sourcerecordid>1321792867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3beae88aa85dd2bc06d65e93d8f7b8777d2b7a51f7d48d30c18eca99f3351bfa3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwA1iQR5YEX9wkDkyIbwmJpcyWY1_AVRIX20Xw73FV6Mh0p9PzvtI9hJwCy4FBdbHMl63NCwZFDpAzVu2RKZS8yNhcsP3dXs0n5CiEJWMAZVkdkknBuWCV4FOyuMWIOtrxjWo3alxF6rFX0boxUDtS3dvRatXTiF_xkj6Nwb69x0A77waqaIgqYua6LL5jpnykgzPYH5ODTvUBT37njLze3y1uHrPnl4enm-vnTM-LJma8RYVCKCVKY4pWs8pUJTbciK5uRV3X6VirErrazIXhTINArZqm47yEtlN8Rs63vSvvPtYYohxs0Nj3akS3DhJ4AXVTiKpOKGxR7V0IHju58nZQ_lsCkxuZcimTTLmRKQFkkpkyZ7_163ZAs0v82UvA1RbA9OSnRS-DtpgsGuuTVGmc_af-B2vLhVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321792867</pqid></control><display><type>article</type><title>Detecting concept relations in clinical text: Insights from a state-of-the-art model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Xiaodan ; Cherry, Colin ; Kiritchenko, Svetlana ; Martin, Joel ; de Bruijn, Berry</creator><creatorcontrib>Zhu, Xiaodan ; Cherry, Colin ; Kiritchenko, Svetlana ; Martin, Joel ; de Bruijn, Berry</creatorcontrib><description>[Display omitted] ► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still insufficient, while leveraging unlabeled data helps. This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page description (appearing as a part of [5]) of a top-ranked model in the 2010 I2B2 NLP Challenge to a necessary level of details, with the belief that feature design is the most crucial factor to the success of our system and hence deserves a more detailed discussion. We present a precise quantification of the contributions of a wide variety of knowledge sources. In addition, we show the end-to-end results obtained on the noisy output of a top-ranked concept detector, which could help construct a more complete view of the state of the art in the real-world scenario. As the second major objective, we reformulate our models into a composite-kernel framework and present the best result, according to our knowledge, on the same dataset.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2012.11.006</identifier><identifier>PMID: 23380683</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Data Mining - methods ; Databases, Factual ; Electronic Health Records ; Humans ; Natural Language Processing ; Semantics ; Text mining</subject><ispartof>Journal of biomedical informatics, 2013-04, Vol.46 (2), p.275-285</ispartof><rights>2012</rights><rights>Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3beae88aa85dd2bc06d65e93d8f7b8777d2b7a51f7d48d30c18eca99f3351bfa3</citedby><cites>FETCH-LOGICAL-c429t-3beae88aa85dd2bc06d65e93d8f7b8777d2b7a51f7d48d30c18eca99f3351bfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbi.2012.11.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23380683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaodan</creatorcontrib><creatorcontrib>Cherry, Colin</creatorcontrib><creatorcontrib>Kiritchenko, Svetlana</creatorcontrib><creatorcontrib>Martin, Joel</creatorcontrib><creatorcontrib>de Bruijn, Berry</creatorcontrib><title>Detecting concept relations in clinical text: Insights from a state-of-the-art model</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>[Display omitted] ► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still insufficient, while leveraging unlabeled data helps. This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page description (appearing as a part of [5]) of a top-ranked model in the 2010 I2B2 NLP Challenge to a necessary level of details, with the belief that feature design is the most crucial factor to the success of our system and hence deserves a more detailed discussion. We present a precise quantification of the contributions of a wide variety of knowledge sources. In addition, we show the end-to-end results obtained on the noisy output of a top-ranked concept detector, which could help construct a more complete view of the state of the art in the real-world scenario. As the second major objective, we reformulate our models into a composite-kernel framework and present the best result, according to our knowledge, on the same dataset.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Data Mining - methods</subject><subject>Databases, Factual</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>Natural Language Processing</subject><subject>Semantics</subject><subject>Text mining</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwA1iQR5YEX9wkDkyIbwmJpcyWY1_AVRIX20Xw73FV6Mh0p9PzvtI9hJwCy4FBdbHMl63NCwZFDpAzVu2RKZS8yNhcsP3dXs0n5CiEJWMAZVkdkknBuWCV4FOyuMWIOtrxjWo3alxF6rFX0boxUDtS3dvRatXTiF_xkj6Nwb69x0A77waqaIgqYua6LL5jpnykgzPYH5ODTvUBT37njLze3y1uHrPnl4enm-vnTM-LJma8RYVCKCVKY4pWs8pUJTbciK5uRV3X6VirErrazIXhTINArZqm47yEtlN8Rs63vSvvPtYYohxs0Nj3akS3DhJ4AXVTiKpOKGxR7V0IHju58nZQ_lsCkxuZcimTTLmRKQFkkpkyZ7_163ZAs0v82UvA1RbA9OSnRS-DtpgsGuuTVGmc_af-B2vLhVc</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Zhu, Xiaodan</creator><creator>Cherry, Colin</creator><creator>Kiritchenko, Svetlana</creator><creator>Martin, Joel</creator><creator>de Bruijn, Berry</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>Detecting concept relations in clinical text: Insights from a state-of-the-art model</title><author>Zhu, Xiaodan ; Cherry, Colin ; Kiritchenko, Svetlana ; Martin, Joel ; de Bruijn, Berry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3beae88aa85dd2bc06d65e93d8f7b8777d2b7a51f7d48d30c18eca99f3351bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Data Mining - methods</topic><topic>Databases, Factual</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>Natural Language Processing</topic><topic>Semantics</topic><topic>Text mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaodan</creatorcontrib><creatorcontrib>Cherry, Colin</creatorcontrib><creatorcontrib>Kiritchenko, Svetlana</creatorcontrib><creatorcontrib>Martin, Joel</creatorcontrib><creatorcontrib>de Bruijn, Berry</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaodan</au><au>Cherry, Colin</au><au>Kiritchenko, Svetlana</au><au>Martin, Joel</au><au>de Bruijn, Berry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting concept relations in clinical text: Insights from a state-of-the-art model</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>46</volume><issue>2</issue><spage>275</spage><epage>285</epage><pages>275-285</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>[Display omitted] ► Discuss a top-ranked model for detecting concept relations in real clinical text. ► Knowledge sources of various nature play different roles but cooperated very well. ► Unrecognized concepts dramatically impair performance, raising more research concerns. ► Labeled data are still insufficient, while leveraging unlabeled data helps. This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page description (appearing as a part of [5]) of a top-ranked model in the 2010 I2B2 NLP Challenge to a necessary level of details, with the belief that feature design is the most crucial factor to the success of our system and hence deserves a more detailed discussion. We present a precise quantification of the contributions of a wide variety of knowledge sources. In addition, we show the end-to-end results obtained on the noisy output of a top-ranked concept detector, which could help construct a more complete view of the state of the art in the real-world scenario. As the second major objective, we reformulate our models into a composite-kernel framework and present the best result, according to our knowledge, on the same dataset.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23380683</pmid><doi>10.1016/j.jbi.2012.11.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0464
ispartof Journal of biomedical informatics, 2013-04, Vol.46 (2), p.275-285
issn 1532-0464
1532-0480
language eng
recordid cdi_proquest_miscellaneous_1321792867
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial Intelligence
Data Mining - methods
Databases, Factual
Electronic Health Records
Humans
Natural Language Processing
Semantics
Text mining
title Detecting concept relations in clinical text: Insights from a state-of-the-art model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20concept%20relations%20in%20clinical%20text:%20Insights%20from%20a%20state-of-the-art%20model&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Zhu,%20Xiaodan&rft.date=2013-04-01&rft.volume=46&rft.issue=2&rft.spage=275&rft.epage=285&rft.pages=275-285&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2012.11.006&rft_dat=%3Cproquest_cross%3E1321792867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321792867&rft_id=info:pmid/23380683&rft_els_id=S1532046412001803&rfr_iscdi=true