Direct Measurement of Electron Transfer through a Hydrogen Bond between Single Molecules
Understanding electron transfer (ET) from a single molecule to another single molecule holds essential importance to realize bottom-up molecular devices in which constituent molecules are self-assembled via noncovalent interactions between each other. However, rather little is currently known about...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2013-03, Vol.135 (12), p.4592-4595 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding electron transfer (ET) from a single molecule to another single molecule holds essential importance to realize bottom-up molecular devices in which constituent molecules are self-assembled via noncovalent interactions between each other. However, rather little is currently known about the ET properties at the single-molecule interface. Here we employ molecular tips to quantify the ET through a H-bond between single molecules. We found that a H-bond conducts electrons better than a covalent σ bond at short-range. Its conductance, however, decays steeply as the chain length of the H-bonded molecules increases. First-principle calculations were performed to reveal the electronic origin of the facile ET through the H-bond. Our results demonstrate that H-bonding in a molecular junction significantly affects its transport property. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja311463b |