Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype

Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2013-04, Vol.154 (4), p.1392-1399
Hauptverfasser: Fox, Jocelyn E. Manning, Seeberger, Karen, Dai, Xiao Qing, Lyon, James, Spigelman, Aliya F, Kolic, Jelena, Hajmrle, Catherine, Joseph, Jamie W, Kin, Tatsuya, Shapiro, A.M. James, Korbutt, Gregory, MacDonald, Patrick E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1399
container_issue 4
container_start_page 1392
container_title Endocrinology (Philadelphia)
container_volume 154
creator Fox, Jocelyn E. Manning
Seeberger, Karen
Dai, Xiao Qing
Lyon, James
Spigelman, Aliya F
Kolic, Jelena
Hajmrle, Catherine
Joseph, Jamie W
Kin, Tatsuya
Shapiro, A.M. James
Korbutt, Gregory
MacDonald, Patrick E
description Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24–48 hours of culture had less insulin staining, content, and secretion. The cultured infant islets expressed pancreatic and duodenal homeobox 1 and several (Glut1, Cav1.3, Kir6.2) but not all (syntaxin 1A and synaptosomal-associated protein 25) markers of functional islets, suggesting a loss of secretory phenotype in culture. The activity of key ion channels was maintained in isolated infant β-cells, whereas exocytosis was much lower than in adults. We examined whether a functional exocytotic phenotype could be reestablished under conditions thought to promote β-cell differentiation. After a 24- to 28-day expansion and maturation protocol, we found preservation of endocrine markers and hormone expression, an increased proportion of insulin-positive cells, elevated expression of syntaxin 1A and synaptosomal-associated protein 25, and restoration of exocytosis to levels comparable with that in adult β-cells. Thus, human infant islets are prone to loss of their exocytotic phenotype in culture but amenable to experimental approaches aimed at promoting expansion and functional maturation. Control of exocytotic protein expression may be an important mechanism underlying the plasticity of the secretory machinery, an increased understanding of which may lead to improved regenerative approaches to treat diabetes.
doi_str_mv 10.1210/en.2012-1934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1319618008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2012-1934</oup_id><sourcerecordid>3130623801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-c503c1506d092301e58ccc976b34cca0c53d90c0c2c4d1d018915e1809787b9f3</originalsourceid><addsrcrecordid>eNp10d1qFDEUB_Agit1uvfNaBkTqRaeek2Q-cilL1xYK9qJeh-yZDJ0ym4xJBtzX8kF8JrPsakHsVQj8OB__w9hbhEvkCJ-su-SAvEQl5Au2QCWrssEGXrIFAIqy4bw5YacxPuavlFK8ZidcSKlaJRZsvZ4dpcE7MxZ3o4lpoCHtCt8X6cEW1_PWuOLG9cal4tfPcmXHsbj64WmXfJbF3YN1Pu0me8Ze9WaM9s3xXbJv66v71XV5-_XLzerzbUmyFqmkCgRhBXUHigtAW7VEpJp6IySRAapEp4CAOMkOO8BWYWWxBdW0zUb1Ysk-HupOwX-fbUx6O0TKUxln_Rw1ClR19tBm-v4f-ujnkPeMWqCAmos2x7NkFwdFwccYbK-nMGxN2GkEvc9XW6f3-ep9vpm_OxadN1vb_cV_As3gwxGYSGbsg3E0xCeXL6O4guzOD87P03Mty2NLcZDWdZ7C4OwUbIxP2_x30N9ELp3L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130623801</pqid></control><display><type>article</type><title>Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Fox, Jocelyn E. Manning ; Seeberger, Karen ; Dai, Xiao Qing ; Lyon, James ; Spigelman, Aliya F ; Kolic, Jelena ; Hajmrle, Catherine ; Joseph, Jamie W ; Kin, Tatsuya ; Shapiro, A.M. James ; Korbutt, Gregory ; MacDonald, Patrick E</creator><creatorcontrib>Fox, Jocelyn E. Manning ; Seeberger, Karen ; Dai, Xiao Qing ; Lyon, James ; Spigelman, Aliya F ; Kolic, Jelena ; Hajmrle, Catherine ; Joseph, Jamie W ; Kin, Tatsuya ; Shapiro, A.M. James ; Korbutt, Gregory ; MacDonald, Patrick E</creatorcontrib><description>Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24–48 hours of culture had less insulin staining, content, and secretion. The cultured infant islets expressed pancreatic and duodenal homeobox 1 and several (Glut1, Cav1.3, Kir6.2) but not all (syntaxin 1A and synaptosomal-associated protein 25) markers of functional islets, suggesting a loss of secretory phenotype in culture. The activity of key ion channels was maintained in isolated infant β-cells, whereas exocytosis was much lower than in adults. We examined whether a functional exocytotic phenotype could be reestablished under conditions thought to promote β-cell differentiation. After a 24- to 28-day expansion and maturation protocol, we found preservation of endocrine markers and hormone expression, an increased proportion of insulin-positive cells, elevated expression of syntaxin 1A and synaptosomal-associated protein 25, and restoration of exocytosis to levels comparable with that in adult β-cells. Thus, human infant islets are prone to loss of their exocytotic phenotype in culture but amenable to experimental approaches aimed at promoting expansion and functional maturation. Control of exocytotic protein expression may be an important mechanism underlying the plasticity of the secretory machinery, an increased understanding of which may lead to improved regenerative approaches to treat diabetes.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2012-1934</identifier><identifier>PMID: 23449893</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Adults ; Babies ; Beta cells ; Biological and medical sciences ; Biopsy ; Calcium channels (voltage-gated) ; Calcium Channels, L-Type - metabolism ; Cell culture ; Cell differentiation ; Cell Differentiation - physiology ; Cells, Cultured ; Culture ; Diabetes mellitus ; Differentiation (biology) ; Exocytosis ; Exocytosis - physiology ; Female ; Functional plasticity ; Fundamental and applied biological sciences. Psychology ; Genotype &amp; phenotype ; Glucagon - metabolism ; Glucose Transporter Type 1 - metabolism ; Homeobox ; Humans ; Infant ; Infants ; Insulin ; Insulin - metabolism ; Insulin Secretion ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Insulin-Secreting Cells - physiology ; Ion channels ; Islet cells ; Islets of Langerhans - growth &amp; development ; Islets of Langerhans - metabolism ; Male ; Maturation ; Middle Aged ; Patch-Clamp Techniques ; Phenotype ; Phenotypes ; Phenotypic plasticity ; Potassium channels (inwardly-rectifying) ; Potassium Channels, Inwardly Rectifying - metabolism ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Synaptosomal-Associated Protein 25 - metabolism ; Syntaxin ; Syntaxin 1 ; Syntaxin 1 - metabolism ; Vertebrates: endocrinology</subject><ispartof>Endocrinology (Philadelphia), 2013-04, Vol.154 (4), p.1392-1399</ispartof><rights>Copyright © 2013 by The Endocrine Society</rights><rights>Copyright © 2013 by The Endocrine Society 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-c503c1506d092301e58ccc976b34cca0c53d90c0c2c4d1d018915e1809787b9f3</citedby><cites>FETCH-LOGICAL-c463t-c503c1506d092301e58ccc976b34cca0c53d90c0c2c4d1d018915e1809787b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27179290$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23449893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Jocelyn E. Manning</creatorcontrib><creatorcontrib>Seeberger, Karen</creatorcontrib><creatorcontrib>Dai, Xiao Qing</creatorcontrib><creatorcontrib>Lyon, James</creatorcontrib><creatorcontrib>Spigelman, Aliya F</creatorcontrib><creatorcontrib>Kolic, Jelena</creatorcontrib><creatorcontrib>Hajmrle, Catherine</creatorcontrib><creatorcontrib>Joseph, Jamie W</creatorcontrib><creatorcontrib>Kin, Tatsuya</creatorcontrib><creatorcontrib>Shapiro, A.M. James</creatorcontrib><creatorcontrib>Korbutt, Gregory</creatorcontrib><creatorcontrib>MacDonald, Patrick E</creatorcontrib><title>Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24–48 hours of culture had less insulin staining, content, and secretion. The cultured infant islets expressed pancreatic and duodenal homeobox 1 and several (Glut1, Cav1.3, Kir6.2) but not all (syntaxin 1A and synaptosomal-associated protein 25) markers of functional islets, suggesting a loss of secretory phenotype in culture. The activity of key ion channels was maintained in isolated infant β-cells, whereas exocytosis was much lower than in adults. We examined whether a functional exocytotic phenotype could be reestablished under conditions thought to promote β-cell differentiation. After a 24- to 28-day expansion and maturation protocol, we found preservation of endocrine markers and hormone expression, an increased proportion of insulin-positive cells, elevated expression of syntaxin 1A and synaptosomal-associated protein 25, and restoration of exocytosis to levels comparable with that in adult β-cells. Thus, human infant islets are prone to loss of their exocytotic phenotype in culture but amenable to experimental approaches aimed at promoting expansion and functional maturation. Control of exocytotic protein expression may be an important mechanism underlying the plasticity of the secretory machinery, an increased understanding of which may lead to improved regenerative approaches to treat diabetes.</description><subject>Adults</subject><subject>Babies</subject><subject>Beta cells</subject><subject>Biological and medical sciences</subject><subject>Biopsy</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Culture</subject><subject>Diabetes mellitus</subject><subject>Differentiation (biology)</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>Female</subject><subject>Functional plasticity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genotype &amp; phenotype</subject><subject>Glucagon - metabolism</subject><subject>Glucose Transporter Type 1 - metabolism</subject><subject>Homeobox</subject><subject>Humans</subject><subject>Infant</subject><subject>Infants</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Insulin-Secreting Cells - physiology</subject><subject>Ion channels</subject><subject>Islet cells</subject><subject>Islets of Langerhans - growth &amp; development</subject><subject>Islets of Langerhans - metabolism</subject><subject>Male</subject><subject>Maturation</subject><subject>Middle Aged</subject><subject>Patch-Clamp Techniques</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic plasticity</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Synaptosomal-Associated Protein 25 - metabolism</subject><subject>Syntaxin</subject><subject>Syntaxin 1</subject><subject>Syntaxin 1 - metabolism</subject><subject>Vertebrates: endocrinology</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10d1qFDEUB_Agit1uvfNaBkTqRaeek2Q-cilL1xYK9qJeh-yZDJ0ym4xJBtzX8kF8JrPsakHsVQj8OB__w9hbhEvkCJ-su-SAvEQl5Au2QCWrssEGXrIFAIqy4bw5YacxPuavlFK8ZidcSKlaJRZsvZ4dpcE7MxZ3o4lpoCHtCt8X6cEW1_PWuOLG9cal4tfPcmXHsbj64WmXfJbF3YN1Pu0me8Ze9WaM9s3xXbJv66v71XV5-_XLzerzbUmyFqmkCgRhBXUHigtAW7VEpJp6IySRAapEp4CAOMkOO8BWYWWxBdW0zUb1Ysk-HupOwX-fbUx6O0TKUxln_Rw1ClR19tBm-v4f-ujnkPeMWqCAmos2x7NkFwdFwccYbK-nMGxN2GkEvc9XW6f3-ep9vpm_OxadN1vb_cV_As3gwxGYSGbsg3E0xCeXL6O4guzOD87P03Mty2NLcZDWdZ7C4OwUbIxP2_x30N9ELp3L</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Fox, Jocelyn E. Manning</creator><creator>Seeberger, Karen</creator><creator>Dai, Xiao Qing</creator><creator>Lyon, James</creator><creator>Spigelman, Aliya F</creator><creator>Kolic, Jelena</creator><creator>Hajmrle, Catherine</creator><creator>Joseph, Jamie W</creator><creator>Kin, Tatsuya</creator><creator>Shapiro, A.M. James</creator><creator>Korbutt, Gregory</creator><creator>MacDonald, Patrick E</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype</title><author>Fox, Jocelyn E. Manning ; Seeberger, Karen ; Dai, Xiao Qing ; Lyon, James ; Spigelman, Aliya F ; Kolic, Jelena ; Hajmrle, Catherine ; Joseph, Jamie W ; Kin, Tatsuya ; Shapiro, A.M. James ; Korbutt, Gregory ; MacDonald, Patrick E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-c503c1506d092301e58ccc976b34cca0c53d90c0c2c4d1d018915e1809787b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adults</topic><topic>Babies</topic><topic>Beta cells</topic><topic>Biological and medical sciences</topic><topic>Biopsy</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Culture</topic><topic>Diabetes mellitus</topic><topic>Differentiation (biology)</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>Female</topic><topic>Functional plasticity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genotype &amp; phenotype</topic><topic>Glucagon - metabolism</topic><topic>Glucose Transporter Type 1 - metabolism</topic><topic>Homeobox</topic><topic>Humans</topic><topic>Infant</topic><topic>Infants</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Insulin-Secreting Cells - physiology</topic><topic>Ion channels</topic><topic>Islet cells</topic><topic>Islets of Langerhans - growth &amp; development</topic><topic>Islets of Langerhans - metabolism</topic><topic>Male</topic><topic>Maturation</topic><topic>Middle Aged</topic><topic>Patch-Clamp Techniques</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic plasticity</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Synaptosomal-Associated Protein 25 - metabolism</topic><topic>Syntaxin</topic><topic>Syntaxin 1</topic><topic>Syntaxin 1 - metabolism</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Jocelyn E. Manning</creatorcontrib><creatorcontrib>Seeberger, Karen</creatorcontrib><creatorcontrib>Dai, Xiao Qing</creatorcontrib><creatorcontrib>Lyon, James</creatorcontrib><creatorcontrib>Spigelman, Aliya F</creatorcontrib><creatorcontrib>Kolic, Jelena</creatorcontrib><creatorcontrib>Hajmrle, Catherine</creatorcontrib><creatorcontrib>Joseph, Jamie W</creatorcontrib><creatorcontrib>Kin, Tatsuya</creatorcontrib><creatorcontrib>Shapiro, A.M. James</creatorcontrib><creatorcontrib>Korbutt, Gregory</creatorcontrib><creatorcontrib>MacDonald, Patrick E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Jocelyn E. Manning</au><au>Seeberger, Karen</au><au>Dai, Xiao Qing</au><au>Lyon, James</au><au>Spigelman, Aliya F</au><au>Kolic, Jelena</au><au>Hajmrle, Catherine</au><au>Joseph, Jamie W</au><au>Kin, Tatsuya</au><au>Shapiro, A.M. James</au><au>Korbutt, Gregory</au><au>MacDonald, Patrick E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>154</volume><issue>4</issue><spage>1392</spage><epage>1399</epage><pages>1392-1399</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24–48 hours of culture had less insulin staining, content, and secretion. The cultured infant islets expressed pancreatic and duodenal homeobox 1 and several (Glut1, Cav1.3, Kir6.2) but not all (syntaxin 1A and synaptosomal-associated protein 25) markers of functional islets, suggesting a loss of secretory phenotype in culture. The activity of key ion channels was maintained in isolated infant β-cells, whereas exocytosis was much lower than in adults. We examined whether a functional exocytotic phenotype could be reestablished under conditions thought to promote β-cell differentiation. After a 24- to 28-day expansion and maturation protocol, we found preservation of endocrine markers and hormone expression, an increased proportion of insulin-positive cells, elevated expression of syntaxin 1A and synaptosomal-associated protein 25, and restoration of exocytosis to levels comparable with that in adult β-cells. Thus, human infant islets are prone to loss of their exocytotic phenotype in culture but amenable to experimental approaches aimed at promoting expansion and functional maturation. Control of exocytotic protein expression may be an important mechanism underlying the plasticity of the secretory machinery, an increased understanding of which may lead to improved regenerative approaches to treat diabetes.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>23449893</pmid><doi>10.1210/en.2012-1934</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2013-04, Vol.154 (4), p.1392-1399
issn 0013-7227
1945-7170
language eng
recordid cdi_proquest_miscellaneous_1319618008
source MEDLINE; Journals@Ovid Complete; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adults
Babies
Beta cells
Biological and medical sciences
Biopsy
Calcium channels (voltage-gated)
Calcium Channels, L-Type - metabolism
Cell culture
Cell differentiation
Cell Differentiation - physiology
Cells, Cultured
Culture
Diabetes mellitus
Differentiation (biology)
Exocytosis
Exocytosis - physiology
Female
Functional plasticity
Fundamental and applied biological sciences. Psychology
Genotype & phenotype
Glucagon - metabolism
Glucose Transporter Type 1 - metabolism
Homeobox
Humans
Infant
Infants
Insulin
Insulin - metabolism
Insulin Secretion
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - metabolism
Insulin-Secreting Cells - physiology
Ion channels
Islet cells
Islets of Langerhans - growth & development
Islets of Langerhans - metabolism
Male
Maturation
Middle Aged
Patch-Clamp Techniques
Phenotype
Phenotypes
Phenotypic plasticity
Potassium channels (inwardly-rectifying)
Potassium Channels, Inwardly Rectifying - metabolism
Proteins
Reverse Transcriptase Polymerase Chain Reaction
Synaptosomal-Associated Protein 25 - metabolism
Syntaxin
Syntaxin 1
Syntaxin 1 - metabolism
Vertebrates: endocrinology
title Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Plasticity%20of%20the%20Human%20Infant%20%CE%B2-Cell%20Exocytotic%20Phenotype&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Fox,%20Jocelyn%20E.%20Manning&rft.date=2013-04-01&rft.volume=154&rft.issue=4&rft.spage=1392&rft.epage=1399&rft.pages=1392-1399&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2012-1934&rft_dat=%3Cproquest_cross%3E3130623801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130623801&rft_id=info:pmid/23449893&rft_oup_id=10.1210/en.2012-1934&rfr_iscdi=true