Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype
Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2013-04, Vol.154 (4), p.1392-1399 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1399 |
---|---|
container_issue | 4 |
container_start_page | 1392 |
container_title | Endocrinology (Philadelphia) |
container_volume | 154 |
creator | Fox, Jocelyn E. Manning Seeberger, Karen Dai, Xiao Qing Lyon, James Spigelman, Aliya F Kolic, Jelena Hajmrle, Catherine Joseph, Jamie W Kin, Tatsuya Shapiro, A.M. James Korbutt, Gregory MacDonald, Patrick E |
description | Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24–48 hours of culture had less insulin staining, content, and secretion. The cultured infant islets expressed pancreatic and duodenal homeobox 1 and several (Glut1, Cav1.3, Kir6.2) but not all (syntaxin 1A and synaptosomal-associated protein 25) markers of functional islets, suggesting a loss of secretory phenotype in culture. The activity of key ion channels was maintained in isolated infant β-cells, whereas exocytosis was much lower than in adults. We examined whether a functional exocytotic phenotype could be reestablished under conditions thought to promote β-cell differentiation. After a 24- to 28-day expansion and maturation protocol, we found preservation of endocrine markers and hormone expression, an increased proportion of insulin-positive cells, elevated expression of syntaxin 1A and synaptosomal-associated protein 25, and restoration of exocytosis to levels comparable with that in adult β-cells. Thus, human infant islets are prone to loss of their exocytotic phenotype in culture but amenable to experimental approaches aimed at promoting expansion and functional maturation. Control of exocytotic protein expression may be an important mechanism underlying the plasticity of the secretory machinery, an increased understanding of which may lead to improved regenerative approaches to treat diabetes. |
doi_str_mv | 10.1210/en.2012-1934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1319618008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2012-1934</oup_id><sourcerecordid>3130623801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-c503c1506d092301e58ccc976b34cca0c53d90c0c2c4d1d018915e1809787b9f3</originalsourceid><addsrcrecordid>eNp10d1qFDEUB_Agit1uvfNaBkTqRaeek2Q-cilL1xYK9qJeh-yZDJ0ym4xJBtzX8kF8JrPsakHsVQj8OB__w9hbhEvkCJ-su-SAvEQl5Au2QCWrssEGXrIFAIqy4bw5YacxPuavlFK8ZidcSKlaJRZsvZ4dpcE7MxZ3o4lpoCHtCt8X6cEW1_PWuOLG9cal4tfPcmXHsbj64WmXfJbF3YN1Pu0me8Ze9WaM9s3xXbJv66v71XV5-_XLzerzbUmyFqmkCgRhBXUHigtAW7VEpJp6IySRAapEp4CAOMkOO8BWYWWxBdW0zUb1Ysk-HupOwX-fbUx6O0TKUxln_Rw1ClR19tBm-v4f-ujnkPeMWqCAmos2x7NkFwdFwccYbK-nMGxN2GkEvc9XW6f3-ep9vpm_OxadN1vb_cV_As3gwxGYSGbsg3E0xCeXL6O4guzOD87P03Mty2NLcZDWdZ7C4OwUbIxP2_x30N9ELp3L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130623801</pqid></control><display><type>article</type><title>Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Fox, Jocelyn E. Manning ; Seeberger, Karen ; Dai, Xiao Qing ; Lyon, James ; Spigelman, Aliya F ; Kolic, Jelena ; Hajmrle, Catherine ; Joseph, Jamie W ; Kin, Tatsuya ; Shapiro, A.M. James ; Korbutt, Gregory ; MacDonald, Patrick E</creator><creatorcontrib>Fox, Jocelyn E. Manning ; Seeberger, Karen ; Dai, Xiao Qing ; Lyon, James ; Spigelman, Aliya F ; Kolic, Jelena ; Hajmrle, Catherine ; Joseph, Jamie W ; Kin, Tatsuya ; Shapiro, A.M. James ; Korbutt, Gregory ; MacDonald, Patrick E</creatorcontrib><description>Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24–48 hours of culture had less insulin staining, content, and secretion. The cultured infant islets expressed pancreatic and duodenal homeobox 1 and several (Glut1, Cav1.3, Kir6.2) but not all (syntaxin 1A and synaptosomal-associated protein 25) markers of functional islets, suggesting a loss of secretory phenotype in culture. The activity of key ion channels was maintained in isolated infant β-cells, whereas exocytosis was much lower than in adults. We examined whether a functional exocytotic phenotype could be reestablished under conditions thought to promote β-cell differentiation. After a 24- to 28-day expansion and maturation protocol, we found preservation of endocrine markers and hormone expression, an increased proportion of insulin-positive cells, elevated expression of syntaxin 1A and synaptosomal-associated protein 25, and restoration of exocytosis to levels comparable with that in adult β-cells. Thus, human infant islets are prone to loss of their exocytotic phenotype in culture but amenable to experimental approaches aimed at promoting expansion and functional maturation. Control of exocytotic protein expression may be an important mechanism underlying the plasticity of the secretory machinery, an increased understanding of which may lead to improved regenerative approaches to treat diabetes.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2012-1934</identifier><identifier>PMID: 23449893</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Adults ; Babies ; Beta cells ; Biological and medical sciences ; Biopsy ; Calcium channels (voltage-gated) ; Calcium Channels, L-Type - metabolism ; Cell culture ; Cell differentiation ; Cell Differentiation - physiology ; Cells, Cultured ; Culture ; Diabetes mellitus ; Differentiation (biology) ; Exocytosis ; Exocytosis - physiology ; Female ; Functional plasticity ; Fundamental and applied biological sciences. Psychology ; Genotype & phenotype ; Glucagon - metabolism ; Glucose Transporter Type 1 - metabolism ; Homeobox ; Humans ; Infant ; Infants ; Insulin ; Insulin - metabolism ; Insulin Secretion ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Insulin-Secreting Cells - physiology ; Ion channels ; Islet cells ; Islets of Langerhans - growth & development ; Islets of Langerhans - metabolism ; Male ; Maturation ; Middle Aged ; Patch-Clamp Techniques ; Phenotype ; Phenotypes ; Phenotypic plasticity ; Potassium channels (inwardly-rectifying) ; Potassium Channels, Inwardly Rectifying - metabolism ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Synaptosomal-Associated Protein 25 - metabolism ; Syntaxin ; Syntaxin 1 ; Syntaxin 1 - metabolism ; Vertebrates: endocrinology</subject><ispartof>Endocrinology (Philadelphia), 2013-04, Vol.154 (4), p.1392-1399</ispartof><rights>Copyright © 2013 by The Endocrine Society</rights><rights>Copyright © 2013 by The Endocrine Society 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-c503c1506d092301e58ccc976b34cca0c53d90c0c2c4d1d018915e1809787b9f3</citedby><cites>FETCH-LOGICAL-c463t-c503c1506d092301e58ccc976b34cca0c53d90c0c2c4d1d018915e1809787b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27179290$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23449893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Jocelyn E. Manning</creatorcontrib><creatorcontrib>Seeberger, Karen</creatorcontrib><creatorcontrib>Dai, Xiao Qing</creatorcontrib><creatorcontrib>Lyon, James</creatorcontrib><creatorcontrib>Spigelman, Aliya F</creatorcontrib><creatorcontrib>Kolic, Jelena</creatorcontrib><creatorcontrib>Hajmrle, Catherine</creatorcontrib><creatorcontrib>Joseph, Jamie W</creatorcontrib><creatorcontrib>Kin, Tatsuya</creatorcontrib><creatorcontrib>Shapiro, A.M. James</creatorcontrib><creatorcontrib>Korbutt, Gregory</creatorcontrib><creatorcontrib>MacDonald, Patrick E</creatorcontrib><title>Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24–48 hours of culture had less insulin staining, content, and secretion. The cultured infant islets expressed pancreatic and duodenal homeobox 1 and several (Glut1, Cav1.3, Kir6.2) but not all (syntaxin 1A and synaptosomal-associated protein 25) markers of functional islets, suggesting a loss of secretory phenotype in culture. The activity of key ion channels was maintained in isolated infant β-cells, whereas exocytosis was much lower than in adults. We examined whether a functional exocytotic phenotype could be reestablished under conditions thought to promote β-cell differentiation. After a 24- to 28-day expansion and maturation protocol, we found preservation of endocrine markers and hormone expression, an increased proportion of insulin-positive cells, elevated expression of syntaxin 1A and synaptosomal-associated protein 25, and restoration of exocytosis to levels comparable with that in adult β-cells. Thus, human infant islets are prone to loss of their exocytotic phenotype in culture but amenable to experimental approaches aimed at promoting expansion and functional maturation. Control of exocytotic protein expression may be an important mechanism underlying the plasticity of the secretory machinery, an increased understanding of which may lead to improved regenerative approaches to treat diabetes.</description><subject>Adults</subject><subject>Babies</subject><subject>Beta cells</subject><subject>Biological and medical sciences</subject><subject>Biopsy</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Culture</subject><subject>Diabetes mellitus</subject><subject>Differentiation (biology)</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>Female</subject><subject>Functional plasticity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genotype & phenotype</subject><subject>Glucagon - metabolism</subject><subject>Glucose Transporter Type 1 - metabolism</subject><subject>Homeobox</subject><subject>Humans</subject><subject>Infant</subject><subject>Infants</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Insulin-Secreting Cells - physiology</subject><subject>Ion channels</subject><subject>Islet cells</subject><subject>Islets of Langerhans - growth & development</subject><subject>Islets of Langerhans - metabolism</subject><subject>Male</subject><subject>Maturation</subject><subject>Middle Aged</subject><subject>Patch-Clamp Techniques</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic plasticity</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Synaptosomal-Associated Protein 25 - metabolism</subject><subject>Syntaxin</subject><subject>Syntaxin 1</subject><subject>Syntaxin 1 - metabolism</subject><subject>Vertebrates: endocrinology</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10d1qFDEUB_Agit1uvfNaBkTqRaeek2Q-cilL1xYK9qJeh-yZDJ0ym4xJBtzX8kF8JrPsakHsVQj8OB__w9hbhEvkCJ-su-SAvEQl5Au2QCWrssEGXrIFAIqy4bw5YacxPuavlFK8ZidcSKlaJRZsvZ4dpcE7MxZ3o4lpoCHtCt8X6cEW1_PWuOLG9cal4tfPcmXHsbj64WmXfJbF3YN1Pu0me8Ze9WaM9s3xXbJv66v71XV5-_XLzerzbUmyFqmkCgRhBXUHigtAW7VEpJp6IySRAapEp4CAOMkOO8BWYWWxBdW0zUb1Ysk-HupOwX-fbUx6O0TKUxln_Rw1ClR19tBm-v4f-ujnkPeMWqCAmos2x7NkFwdFwccYbK-nMGxN2GkEvc9XW6f3-ep9vpm_OxadN1vb_cV_As3gwxGYSGbsg3E0xCeXL6O4guzOD87P03Mty2NLcZDWdZ7C4OwUbIxP2_x30N9ELp3L</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Fox, Jocelyn E. Manning</creator><creator>Seeberger, Karen</creator><creator>Dai, Xiao Qing</creator><creator>Lyon, James</creator><creator>Spigelman, Aliya F</creator><creator>Kolic, Jelena</creator><creator>Hajmrle, Catherine</creator><creator>Joseph, Jamie W</creator><creator>Kin, Tatsuya</creator><creator>Shapiro, A.M. James</creator><creator>Korbutt, Gregory</creator><creator>MacDonald, Patrick E</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype</title><author>Fox, Jocelyn E. Manning ; Seeberger, Karen ; Dai, Xiao Qing ; Lyon, James ; Spigelman, Aliya F ; Kolic, Jelena ; Hajmrle, Catherine ; Joseph, Jamie W ; Kin, Tatsuya ; Shapiro, A.M. James ; Korbutt, Gregory ; MacDonald, Patrick E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-c503c1506d092301e58ccc976b34cca0c53d90c0c2c4d1d018915e1809787b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adults</topic><topic>Babies</topic><topic>Beta cells</topic><topic>Biological and medical sciences</topic><topic>Biopsy</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Culture</topic><topic>Diabetes mellitus</topic><topic>Differentiation (biology)</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>Female</topic><topic>Functional plasticity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genotype & phenotype</topic><topic>Glucagon - metabolism</topic><topic>Glucose Transporter Type 1 - metabolism</topic><topic>Homeobox</topic><topic>Humans</topic><topic>Infant</topic><topic>Infants</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Insulin-Secreting Cells - physiology</topic><topic>Ion channels</topic><topic>Islet cells</topic><topic>Islets of Langerhans - growth & development</topic><topic>Islets of Langerhans - metabolism</topic><topic>Male</topic><topic>Maturation</topic><topic>Middle Aged</topic><topic>Patch-Clamp Techniques</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic plasticity</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Synaptosomal-Associated Protein 25 - metabolism</topic><topic>Syntaxin</topic><topic>Syntaxin 1</topic><topic>Syntaxin 1 - metabolism</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Jocelyn E. Manning</creatorcontrib><creatorcontrib>Seeberger, Karen</creatorcontrib><creatorcontrib>Dai, Xiao Qing</creatorcontrib><creatorcontrib>Lyon, James</creatorcontrib><creatorcontrib>Spigelman, Aliya F</creatorcontrib><creatorcontrib>Kolic, Jelena</creatorcontrib><creatorcontrib>Hajmrle, Catherine</creatorcontrib><creatorcontrib>Joseph, Jamie W</creatorcontrib><creatorcontrib>Kin, Tatsuya</creatorcontrib><creatorcontrib>Shapiro, A.M. James</creatorcontrib><creatorcontrib>Korbutt, Gregory</creatorcontrib><creatorcontrib>MacDonald, Patrick E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Jocelyn E. Manning</au><au>Seeberger, Karen</au><au>Dai, Xiao Qing</au><au>Lyon, James</au><au>Spigelman, Aliya F</au><au>Kolic, Jelena</au><au>Hajmrle, Catherine</au><au>Joseph, Jamie W</au><au>Kin, Tatsuya</au><au>Shapiro, A.M. James</au><au>Korbutt, Gregory</au><au>MacDonald, Patrick E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>154</volume><issue>4</issue><spage>1392</spage><epage>1399</epage><pages>1392-1399</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Our understanding of adult human β-cells is advancing, but we know little about the function and plasticity of β-cells from infants. We therefore characterized islets and single islet cells from human infants after isolation and culture. Although islet morphology in pancreas biopsies was similar to that in adults, infant islets after isolation and 24–48 hours of culture had less insulin staining, content, and secretion. The cultured infant islets expressed pancreatic and duodenal homeobox 1 and several (Glut1, Cav1.3, Kir6.2) but not all (syntaxin 1A and synaptosomal-associated protein 25) markers of functional islets, suggesting a loss of secretory phenotype in culture. The activity of key ion channels was maintained in isolated infant β-cells, whereas exocytosis was much lower than in adults. We examined whether a functional exocytotic phenotype could be reestablished under conditions thought to promote β-cell differentiation. After a 24- to 28-day expansion and maturation protocol, we found preservation of endocrine markers and hormone expression, an increased proportion of insulin-positive cells, elevated expression of syntaxin 1A and synaptosomal-associated protein 25, and restoration of exocytosis to levels comparable with that in adult β-cells. Thus, human infant islets are prone to loss of their exocytotic phenotype in culture but amenable to experimental approaches aimed at promoting expansion and functional maturation. Control of exocytotic protein expression may be an important mechanism underlying the plasticity of the secretory machinery, an increased understanding of which may lead to improved regenerative approaches to treat diabetes.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>23449893</pmid><doi>10.1210/en.2012-1934</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2013-04, Vol.154 (4), p.1392-1399 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1319618008 |
source | MEDLINE; Journals@Ovid Complete; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adults Babies Beta cells Biological and medical sciences Biopsy Calcium channels (voltage-gated) Calcium Channels, L-Type - metabolism Cell culture Cell differentiation Cell Differentiation - physiology Cells, Cultured Culture Diabetes mellitus Differentiation (biology) Exocytosis Exocytosis - physiology Female Functional plasticity Fundamental and applied biological sciences. Psychology Genotype & phenotype Glucagon - metabolism Glucose Transporter Type 1 - metabolism Homeobox Humans Infant Infants Insulin Insulin - metabolism Insulin Secretion Insulin-Secreting Cells - cytology Insulin-Secreting Cells - metabolism Insulin-Secreting Cells - physiology Ion channels Islet cells Islets of Langerhans - growth & development Islets of Langerhans - metabolism Male Maturation Middle Aged Patch-Clamp Techniques Phenotype Phenotypes Phenotypic plasticity Potassium channels (inwardly-rectifying) Potassium Channels, Inwardly Rectifying - metabolism Proteins Reverse Transcriptase Polymerase Chain Reaction Synaptosomal-Associated Protein 25 - metabolism Syntaxin Syntaxin 1 Syntaxin 1 - metabolism Vertebrates: endocrinology |
title | Functional Plasticity of the Human Infant β-Cell Exocytotic Phenotype |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Plasticity%20of%20the%20Human%20Infant%20%CE%B2-Cell%20Exocytotic%20Phenotype&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Fox,%20Jocelyn%20E.%20Manning&rft.date=2013-04-01&rft.volume=154&rft.issue=4&rft.spage=1392&rft.epage=1399&rft.pages=1392-1399&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2012-1934&rft_dat=%3Cproquest_cross%3E3130623801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130623801&rft_id=info:pmid/23449893&rft_oup_id=10.1210/en.2012-1934&rfr_iscdi=true |