Time-consistent mean-variance portfolio selection in discrete and continuous time
It is well known that mean-variance portfolio selection is a time-inconsistent optimal control problem in the sense that it does not satisfy Bellman’s optimality principle and therefore the usual dynamic programming approach fails. We develop a time-consistent formulation of this problem, which is b...
Gespeichert in:
Veröffentlicht in: | Finance and stochastics 2013-04, Vol.17 (2), p.227-271 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 2 |
container_start_page | 227 |
container_title | Finance and stochastics |
container_volume | 17 |
creator | Czichowsky, Christoph |
description | It is well known that mean-variance portfolio selection is a time-inconsistent optimal control problem in the sense that it does not satisfy Bellman’s optimality principle and therefore the usual dynamic programming approach fails. We develop a time-consistent formulation of this problem, which is based on a local notion of optimality called local mean-variance efficiency, in a general semimartingale setting. We start in discrete time, where the formulation is straightforward, and then find the natural extension to continuous time. This complements and generalises the formulation by Basak and Chabakauri (2010) and the corresponding example in Björk and Murgoci (2010), where the treatment and the notion of optimality rely on an underlying Markovian framework. We justify the continuous-time formulation by showing that it coincides with the continuous-time limit of the discrete-time formulation. The proof of this convergence is based on a global description of the locally optimal strategy in terms of the structure condition and the Föllmer–Schweizer decomposition of the mean-variance trade-off. As a by-product, this also gives new convergence results for the Föllmer–Schweizer decomposition, i.e., for locally risk-minimising strategies. |
doi_str_mv | 10.1007/s00780-012-0189-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1319612236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319612236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-e082a5ddd749edaf0aef47b12a98a6290747cbd13c0c9a999c1a33cbfd0043453</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcFL16ik4_tbo5S_IKCCPUc0uyspOwmNckK_vem1IMIHmbm8nuPN4-QSwY3DKC5TWW1QIHxMq2i6ojMmBScMsb5MZmBkopy1cpTcpbSFgB4DfWMvK7diNQGn1zK6HM1ovH000RnvMVqF2Luw-BClXBAm13wlfNV55KNmLEyvquKODs_hSlVuZidk5PeDAkvfu6cvD3cr5dPdPXy-Ly8W1ErG5UpQstN3XVdIxV2pgeDvWw2jBvVmgVX0MjGbjomLFhllFKWGSHspu8ApJC1mJPrg-8uho8JU9ZjSYXDYDyWLJoJphblebEo6NUfdBum6Eu6QtWNUDWDplDsQNkYUorY6110o4lfmoHel6wPJetSst6XrFXR8IMmFda_Y_zl_K_oG4xTf7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357395107</pqid></control><display><type>article</type><title>Time-consistent mean-variance portfolio selection in discrete and continuous time</title><source>SpringerLink (Online service)</source><source>EBSCOhost Business Source Complete</source><creator>Czichowsky, Christoph</creator><creatorcontrib>Czichowsky, Christoph</creatorcontrib><description>It is well known that mean-variance portfolio selection is a time-inconsistent optimal control problem in the sense that it does not satisfy Bellman’s optimality principle and therefore the usual dynamic programming approach fails. We develop a time-consistent formulation of this problem, which is based on a local notion of optimality called local mean-variance efficiency, in a general semimartingale setting. We start in discrete time, where the formulation is straightforward, and then find the natural extension to continuous time. This complements and generalises the formulation by Basak and Chabakauri (2010) and the corresponding example in Björk and Murgoci (2010), where the treatment and the notion of optimality rely on an underlying Markovian framework. We justify the continuous-time formulation by showing that it coincides with the continuous-time limit of the discrete-time formulation. The proof of this convergence is based on a global description of the locally optimal strategy in terms of the structure condition and the Föllmer–Schweizer decomposition of the mean-variance trade-off. As a by-product, this also gives new convergence results for the Föllmer–Schweizer decomposition, i.e., for locally risk-minimising strategies.</description><identifier>ISSN: 0949-2984</identifier><identifier>EISSN: 1432-1122</identifier><identifier>DOI: 10.1007/s00780-012-0189-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Convergence ; Decomposition ; Dynamic programming ; Economic models ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Markovian processes ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Portfolio selection ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Time ; Variance</subject><ispartof>Finance and stochastics, 2013-04, Vol.17 (2), p.227-271</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-e082a5ddd749edaf0aef47b12a98a6290747cbd13c0c9a999c1a33cbfd0043453</citedby><cites>FETCH-LOGICAL-c479t-e082a5ddd749edaf0aef47b12a98a6290747cbd13c0c9a999c1a33cbfd0043453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00780-012-0189-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00780-012-0189-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Czichowsky, Christoph</creatorcontrib><title>Time-consistent mean-variance portfolio selection in discrete and continuous time</title><title>Finance and stochastics</title><addtitle>Finance Stoch</addtitle><description>It is well known that mean-variance portfolio selection is a time-inconsistent optimal control problem in the sense that it does not satisfy Bellman’s optimality principle and therefore the usual dynamic programming approach fails. We develop a time-consistent formulation of this problem, which is based on a local notion of optimality called local mean-variance efficiency, in a general semimartingale setting. We start in discrete time, where the formulation is straightforward, and then find the natural extension to continuous time. This complements and generalises the formulation by Basak and Chabakauri (2010) and the corresponding example in Björk and Murgoci (2010), where the treatment and the notion of optimality rely on an underlying Markovian framework. We justify the continuous-time formulation by showing that it coincides with the continuous-time limit of the discrete-time formulation. The proof of this convergence is based on a global description of the locally optimal strategy in terms of the structure condition and the Föllmer–Schweizer decomposition of the mean-variance trade-off. As a by-product, this also gives new convergence results for the Föllmer–Schweizer decomposition, i.e., for locally risk-minimising strategies.</description><subject>Convergence</subject><subject>Decomposition</subject><subject>Dynamic programming</subject><subject>Economic models</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Markovian processes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Portfolio selection</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Time</subject><subject>Variance</subject><issn>0949-2984</issn><issn>1432-1122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWKt_gLcFL16ik4_tbo5S_IKCCPUc0uyspOwmNckK_vem1IMIHmbm8nuPN4-QSwY3DKC5TWW1QIHxMq2i6ojMmBScMsb5MZmBkopy1cpTcpbSFgB4DfWMvK7diNQGn1zK6HM1ovH000RnvMVqF2Luw-BClXBAm13wlfNV55KNmLEyvquKODs_hSlVuZidk5PeDAkvfu6cvD3cr5dPdPXy-Ly8W1ErG5UpQstN3XVdIxV2pgeDvWw2jBvVmgVX0MjGbjomLFhllFKWGSHspu8ApJC1mJPrg-8uho8JU9ZjSYXDYDyWLJoJphblebEo6NUfdBum6Eu6QtWNUDWDplDsQNkYUorY6110o4lfmoHel6wPJetSst6XrFXR8IMmFda_Y_zl_K_oG4xTf7Y</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Czichowsky, Christoph</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130401</creationdate><title>Time-consistent mean-variance portfolio selection in discrete and continuous time</title><author>Czichowsky, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-e082a5ddd749edaf0aef47b12a98a6290747cbd13c0c9a999c1a33cbfd0043453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Convergence</topic><topic>Decomposition</topic><topic>Dynamic programming</topic><topic>Economic models</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Markovian processes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Portfolio selection</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Time</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czichowsky, Christoph</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Finance and stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czichowsky, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-consistent mean-variance portfolio selection in discrete and continuous time</atitle><jtitle>Finance and stochastics</jtitle><stitle>Finance Stoch</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>17</volume><issue>2</issue><spage>227</spage><epage>271</epage><pages>227-271</pages><issn>0949-2984</issn><eissn>1432-1122</eissn><abstract>It is well known that mean-variance portfolio selection is a time-inconsistent optimal control problem in the sense that it does not satisfy Bellman’s optimality principle and therefore the usual dynamic programming approach fails. We develop a time-consistent formulation of this problem, which is based on a local notion of optimality called local mean-variance efficiency, in a general semimartingale setting. We start in discrete time, where the formulation is straightforward, and then find the natural extension to continuous time. This complements and generalises the formulation by Basak and Chabakauri (2010) and the corresponding example in Björk and Murgoci (2010), where the treatment and the notion of optimality rely on an underlying Markovian framework. We justify the continuous-time formulation by showing that it coincides with the continuous-time limit of the discrete-time formulation. The proof of this convergence is based on a global description of the locally optimal strategy in terms of the structure condition and the Föllmer–Schweizer decomposition of the mean-variance trade-off. As a by-product, this also gives new convergence results for the Föllmer–Schweizer decomposition, i.e., for locally risk-minimising strategies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00780-012-0189-9</doi><tpages>45</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-2984 |
ispartof | Finance and stochastics, 2013-04, Vol.17 (2), p.227-271 |
issn | 0949-2984 1432-1122 |
language | eng |
recordid | cdi_proquest_miscellaneous_1319612236 |
source | SpringerLink (Online service); EBSCOhost Business Source Complete |
subjects | Convergence Decomposition Dynamic programming Economic models Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Insurance Management Markovian processes Mathematics Mathematics and Statistics Partial differential equations Portfolio selection Probability Theory and Stochastic Processes Quantitative Finance Statistics for Business Time Variance |
title | Time-consistent mean-variance portfolio selection in discrete and continuous time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-consistent%20mean-variance%20portfolio%20selection%20in%20discrete%20and%20continuous%20time&rft.jtitle=Finance%20and%20stochastics&rft.au=Czichowsky,%20Christoph&rft.date=2013-04-01&rft.volume=17&rft.issue=2&rft.spage=227&rft.epage=271&rft.pages=227-271&rft.issn=0949-2984&rft.eissn=1432-1122&rft_id=info:doi/10.1007/s00780-012-0189-9&rft_dat=%3Cproquest_cross%3E1319612236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357395107&rft_id=info:pmid/&rfr_iscdi=true |