Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment

Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2013-05, Vol.280 (1759), p.20130110-20130110
Hauptverfasser: Betini, Gustavo S., Griswold, Cortland K., Norris, D. Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20130110
container_issue 1759
container_start_page 20130110
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 280
creator Betini, Gustavo S.
Griswold, Cortland K.
Norris, D. Ryan
description Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms.
doi_str_mv 10.1098/rspb.2013.0110
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_miscellaneous_1319185426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319185426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-f42b3c7e86e82fb49be25ab26da34eb605d0c9d598a5dd2a9cc81ddfbfb362743</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEotvClSPKkQNZ_BE79gUJraClKkKqoFfLsSfUbWIHO1mRf19HW1ZwQJxGlp95PJ63KF5htMVIincxje2WIEy3CGP0pNjgusEVkTV7WmyQ5KQSNSMnxWlKdwghyQR7XpwQyjAnNd4U9zsd41KFPcQSug7MlN6WCX7O4Cen-9KCT25ach3B54OBUntbTrdQ2sXrwZlUhq4cwzj3enLBp9L5UmeFTsFnAfi9i8EP2feieNbpPsHLx3pWfP_08dvuorr6ev559-GqMoyKqepq0lLTgOAgSNfWsgXCdEu41bSGliNmkZGWSaGZtURLYwS2tmu7lnLS1PSseH_wjnM7gDX56ah7NUY36LiooJ36-8a7W_Uj7BXlWDK0Ct48CmLIm0iTGlwy0PfaQ5iTwoxzwRCnzf9RiiUWrCY8o9sDamJIKUJ3nAgjtYap1jDVGqZaw8wNr__8xxH_nV4G6AGIYckLDcbBtKi7MMe8-fRvbXXocmmCX0erjveKN7Rh6kbU6svN9eWFuDxX1_QByVS_SA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319185426</pqid></control><display><type>article</type><title>Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Betini, Gustavo S. ; Griswold, Cortland K. ; Norris, D. Ryan</creator><creatorcontrib>Betini, Gustavo S. ; Griswold, Cortland K. ; Norris, D. Ryan</creatorcontrib><description>Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2945</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2013.0110</identifier><identifier>PMID: 23516241</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Diet ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - physiology ; Environment ; Female ; Male ; Models, Biological ; Oviposition ; Population Density ; Population Regulation ; Random Allocation ; Regulatory Mechanism ; Seasonal Interactions ; Seasonality ; Seasons ; Stability</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2013-05, Vol.280 (1759), p.20130110-20130110</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2013 The Author(s) Published by the Royal Society. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-f42b3c7e86e82fb49be25ab26da34eb605d0c9d598a5dd2a9cc81ddfbfb362743</citedby><cites>FETCH-LOGICAL-c538t-f42b3c7e86e82fb49be25ab26da34eb605d0c9d598a5dd2a9cc81ddfbfb362743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619504/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619504/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23516241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Betini, Gustavo S.</creatorcontrib><creatorcontrib>Griswold, Cortland K.</creatorcontrib><creatorcontrib>Norris, D. Ryan</creatorcontrib><title>Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc. R. Soc. B</addtitle><description>Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms.</description><subject>Animals</subject><subject>Diet</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - physiology</subject><subject>Environment</subject><subject>Female</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Oviposition</subject><subject>Population Density</subject><subject>Population Regulation</subject><subject>Random Allocation</subject><subject>Regulatory Mechanism</subject><subject>Seasonal Interactions</subject><subject>Seasonality</subject><subject>Seasons</subject><subject>Stability</subject><issn>0962-8452</issn><issn>1471-2945</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEotvClSPKkQNZ_BE79gUJraClKkKqoFfLsSfUbWIHO1mRf19HW1ZwQJxGlp95PJ63KF5htMVIincxje2WIEy3CGP0pNjgusEVkTV7WmyQ5KQSNSMnxWlKdwghyQR7XpwQyjAnNd4U9zsd41KFPcQSug7MlN6WCX7O4Cen-9KCT25ach3B54OBUntbTrdQ2sXrwZlUhq4cwzj3enLBp9L5UmeFTsFnAfi9i8EP2feieNbpPsHLx3pWfP_08dvuorr6ev559-GqMoyKqepq0lLTgOAgSNfWsgXCdEu41bSGliNmkZGWSaGZtURLYwS2tmu7lnLS1PSseH_wjnM7gDX56ah7NUY36LiooJ36-8a7W_Uj7BXlWDK0Ct48CmLIm0iTGlwy0PfaQ5iTwoxzwRCnzf9RiiUWrCY8o9sDamJIKUJ3nAgjtYap1jDVGqZaw8wNr__8xxH_nV4G6AGIYckLDcbBtKi7MMe8-fRvbXXocmmCX0erjveKN7Rh6kbU6svN9eWFuDxX1_QByVS_SA</recordid><startdate>20130522</startdate><enddate>20130522</enddate><creator>Betini, Gustavo S.</creator><creator>Griswold, Cortland K.</creator><creator>Norris, D. Ryan</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20130522</creationdate><title>Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment</title><author>Betini, Gustavo S. ; Griswold, Cortland K. ; Norris, D. Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-f42b3c7e86e82fb49be25ab26da34eb605d0c9d598a5dd2a9cc81ddfbfb362743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Diet</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - physiology</topic><topic>Environment</topic><topic>Female</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Oviposition</topic><topic>Population Density</topic><topic>Population Regulation</topic><topic>Random Allocation</topic><topic>Regulatory Mechanism</topic><topic>Seasonal Interactions</topic><topic>Seasonality</topic><topic>Seasons</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betini, Gustavo S.</creatorcontrib><creatorcontrib>Griswold, Cortland K.</creatorcontrib><creatorcontrib>Norris, D. Ryan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betini, Gustavo S.</au><au>Griswold, Cortland K.</au><au>Norris, D. Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc. R. Soc. B</addtitle><date>2013-05-22</date><risdate>2013</risdate><volume>280</volume><issue>1759</issue><spage>20130110</spage><epage>20130110</epage><pages>20130110-20130110</pages><issn>0962-8452</issn><eissn>1471-2945</eissn><eissn>1471-2954</eissn><abstract>Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>23516241</pmid><doi>10.1098/rspb.2013.0110</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2013-05, Vol.280 (1759), p.20130110-20130110
issn 0962-8452
1471-2945
1471-2954
language eng
recordid cdi_proquest_miscellaneous_1319185426
source Jstor Complete Legacy; MEDLINE; PubMed Central
subjects Animals
Diet
Drosophila
Drosophila melanogaster
Drosophila melanogaster - physiology
Environment
Female
Male
Models, Biological
Oviposition
Population Density
Population Regulation
Random Allocation
Regulatory Mechanism
Seasonal Interactions
Seasonality
Seasons
Stability
title Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carry-over%20effects,%20sequential%20density%20dependence%20and%20the%20dynamics%20of%20populations%20in%20a%20seasonal%20environment&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Betini,%20Gustavo%20S.&rft.date=2013-05-22&rft.volume=280&rft.issue=1759&rft.spage=20130110&rft.epage=20130110&rft.pages=20130110-20130110&rft.issn=0962-8452&rft.eissn=1471-2945&rft_id=info:doi/10.1098/rspb.2013.0110&rft_dat=%3Cproquest_royal%3E1319185426%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319185426&rft_id=info:pmid/23516241&rfr_iscdi=true