Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment
Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential densi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2013-05, Vol.280 (1759), p.20130110-20130110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20130110 |
---|---|
container_issue | 1759 |
container_start_page | 20130110 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 280 |
creator | Betini, Gustavo S. Griswold, Cortland K. Norris, D. Ryan |
description | Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms. |
doi_str_mv | 10.1098/rspb.2013.0110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_miscellaneous_1319185426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319185426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-f42b3c7e86e82fb49be25ab26da34eb605d0c9d598a5dd2a9cc81ddfbfb362743</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEotvClSPKkQNZ_BE79gUJraClKkKqoFfLsSfUbWIHO1mRf19HW1ZwQJxGlp95PJ63KF5htMVIincxje2WIEy3CGP0pNjgusEVkTV7WmyQ5KQSNSMnxWlKdwghyQR7XpwQyjAnNd4U9zsd41KFPcQSug7MlN6WCX7O4Cen-9KCT25ach3B54OBUntbTrdQ2sXrwZlUhq4cwzj3enLBp9L5UmeFTsFnAfi9i8EP2feieNbpPsHLx3pWfP_08dvuorr6ev559-GqMoyKqepq0lLTgOAgSNfWsgXCdEu41bSGliNmkZGWSaGZtURLYwS2tmu7lnLS1PSseH_wjnM7gDX56ah7NUY36LiooJ36-8a7W_Uj7BXlWDK0Ct48CmLIm0iTGlwy0PfaQ5iTwoxzwRCnzf9RiiUWrCY8o9sDamJIKUJ3nAgjtYap1jDVGqZaw8wNr__8xxH_nV4G6AGIYckLDcbBtKi7MMe8-fRvbXXocmmCX0erjveKN7Rh6kbU6svN9eWFuDxX1_QByVS_SA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319185426</pqid></control><display><type>article</type><title>Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Betini, Gustavo S. ; Griswold, Cortland K. ; Norris, D. Ryan</creator><creatorcontrib>Betini, Gustavo S. ; Griswold, Cortland K. ; Norris, D. Ryan</creatorcontrib><description>Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2945</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2013.0110</identifier><identifier>PMID: 23516241</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Diet ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - physiology ; Environment ; Female ; Male ; Models, Biological ; Oviposition ; Population Density ; Population Regulation ; Random Allocation ; Regulatory Mechanism ; Seasonal Interactions ; Seasonality ; Seasons ; Stability</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2013-05, Vol.280 (1759), p.20130110-20130110</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2013 The Author(s) Published by the Royal Society. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-f42b3c7e86e82fb49be25ab26da34eb605d0c9d598a5dd2a9cc81ddfbfb362743</citedby><cites>FETCH-LOGICAL-c538t-f42b3c7e86e82fb49be25ab26da34eb605d0c9d598a5dd2a9cc81ddfbfb362743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619504/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619504/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23516241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Betini, Gustavo S.</creatorcontrib><creatorcontrib>Griswold, Cortland K.</creatorcontrib><creatorcontrib>Norris, D. Ryan</creatorcontrib><title>Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc. R. Soc. B</addtitle><description>Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms.</description><subject>Animals</subject><subject>Diet</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - physiology</subject><subject>Environment</subject><subject>Female</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Oviposition</subject><subject>Population Density</subject><subject>Population Regulation</subject><subject>Random Allocation</subject><subject>Regulatory Mechanism</subject><subject>Seasonal Interactions</subject><subject>Seasonality</subject><subject>Seasons</subject><subject>Stability</subject><issn>0962-8452</issn><issn>1471-2945</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEotvClSPKkQNZ_BE79gUJraClKkKqoFfLsSfUbWIHO1mRf19HW1ZwQJxGlp95PJ63KF5htMVIincxje2WIEy3CGP0pNjgusEVkTV7WmyQ5KQSNSMnxWlKdwghyQR7XpwQyjAnNd4U9zsd41KFPcQSug7MlN6WCX7O4Cen-9KCT25ach3B54OBUntbTrdQ2sXrwZlUhq4cwzj3enLBp9L5UmeFTsFnAfi9i8EP2feieNbpPsHLx3pWfP_08dvuorr6ev559-GqMoyKqepq0lLTgOAgSNfWsgXCdEu41bSGliNmkZGWSaGZtURLYwS2tmu7lnLS1PSseH_wjnM7gDX56ah7NUY36LiooJ36-8a7W_Uj7BXlWDK0Ct48CmLIm0iTGlwy0PfaQ5iTwoxzwRCnzf9RiiUWrCY8o9sDamJIKUJ3nAgjtYap1jDVGqZaw8wNr__8xxH_nV4G6AGIYckLDcbBtKi7MMe8-fRvbXXocmmCX0erjveKN7Rh6kbU6svN9eWFuDxX1_QByVS_SA</recordid><startdate>20130522</startdate><enddate>20130522</enddate><creator>Betini, Gustavo S.</creator><creator>Griswold, Cortland K.</creator><creator>Norris, D. Ryan</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20130522</creationdate><title>Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment</title><author>Betini, Gustavo S. ; Griswold, Cortland K. ; Norris, D. Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-f42b3c7e86e82fb49be25ab26da34eb605d0c9d598a5dd2a9cc81ddfbfb362743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Diet</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - physiology</topic><topic>Environment</topic><topic>Female</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Oviposition</topic><topic>Population Density</topic><topic>Population Regulation</topic><topic>Random Allocation</topic><topic>Regulatory Mechanism</topic><topic>Seasonal Interactions</topic><topic>Seasonality</topic><topic>Seasons</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betini, Gustavo S.</creatorcontrib><creatorcontrib>Griswold, Cortland K.</creatorcontrib><creatorcontrib>Norris, D. Ryan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betini, Gustavo S.</au><au>Griswold, Cortland K.</au><au>Norris, D. Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc. R. Soc. B</addtitle><date>2013-05-22</date><risdate>2013</risdate><volume>280</volume><issue>1759</issue><spage>20130110</spage><epage>20130110</epage><pages>20130110-20130110</pages><issn>0962-8452</issn><eissn>1471-2945</eissn><eissn>1471-2954</eissn><abstract>Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>23516241</pmid><doi>10.1098/rspb.2013.0110</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2013-05, Vol.280 (1759), p.20130110-20130110 |
issn | 0962-8452 1471-2945 1471-2954 |
language | eng |
recordid | cdi_proquest_miscellaneous_1319185426 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central |
subjects | Animals Diet Drosophila Drosophila melanogaster Drosophila melanogaster - physiology Environment Female Male Models, Biological Oviposition Population Density Population Regulation Random Allocation Regulatory Mechanism Seasonal Interactions Seasonality Seasons Stability |
title | Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carry-over%20effects,%20sequential%20density%20dependence%20and%20the%20dynamics%20of%20populations%20in%20a%20seasonal%20environment&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Betini,%20Gustavo%20S.&rft.date=2013-05-22&rft.volume=280&rft.issue=1759&rft.spage=20130110&rft.epage=20130110&rft.pages=20130110-20130110&rft.issn=0962-8452&rft.eissn=1471-2945&rft_id=info:doi/10.1098/rspb.2013.0110&rft_dat=%3Cproquest_royal%3E1319185426%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319185426&rft_id=info:pmid/23516241&rfr_iscdi=true |