A training effect on electrical properties in nanoscale BiFeO3
We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2013-04, Vol.24 (13), p.135705-135705 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135705 |
---|---|
container_issue | 13 |
container_start_page | 135705 |
container_title | Nanotechnology |
container_volume | 24 |
creator | Goswami, Sudipta Bhattacharya, Dipten Li, Wuxia Cui, Ajuan Jiang, QianQing Gu, Chang-zhi |
description | We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ∼1.0 MV cm−1 across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices. |
doi_str_mv | 10.1088/0957-4484/24/13/135705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1319169059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319169059</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-20e465f947496c400fcf0f5ca895d37ba487bfbb6e3ffbfa553e183d7f5b53d43</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhoMotlb_QslF8LI238lehFr8gkIveg7Z3URSttk12T34783SqjAww_AwM--8ACwxusdIqRUquSwYU2xF2ArTHFwifgbmmApcCE7UOZj_QTNwldIeIYwVwZdgRiiTigk1Bw9rOETjgw-f0Dpn6wF2Ado2F9HXpoV97HobB28T9AEGE7qU2xY--me7o9fgwpk22ZtTXoCP56f3zWux3b28bdbbwhPFhoIgywR3JZOsFDVDyNUOOV4bVfKGysowJStXVcJS5ypnOKcWK9pIxytOG0YX4O44N5_zNdo06INPtW1bE2w3Jo0pLrEoES8zujyhY3Wwje6jP5j4rX81Z-D2BJhJiosm1D79c5JgwojIHDlyvuv1vhtjyAo1RnoyQE-_1dNvNWF5vT4aQH8ANxN0bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319169059</pqid></control><display><type>article</type><title>A training effect on electrical properties in nanoscale BiFeO3</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Goswami, Sudipta ; Bhattacharya, Dipten ; Li, Wuxia ; Cui, Ajuan ; Jiang, QianQing ; Gu, Chang-zhi</creator><creatorcontrib>Goswami, Sudipta ; Bhattacharya, Dipten ; Li, Wuxia ; Cui, Ajuan ; Jiang, QianQing ; Gu, Chang-zhi</creatorcontrib><description>We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ∼1.0 MV cm−1 across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/24/13/135705</identifier><identifier>PMID: 23478468</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bismuth - chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusion in nanoscale solids ; Diffusion in solids ; Electric Conductivity ; Electron Transport ; Exact sciences and technology ; Ferric Compounds - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Macromolecular Substances - chemistry ; Materials science ; Materials Testing ; Molecular Conformation ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Physics ; Quantum wires ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Temperature ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Nanotechnology, 2013-04, Vol.24 (13), p.135705-135705</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/24/13/135705/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27212426$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23478468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goswami, Sudipta</creatorcontrib><creatorcontrib>Bhattacharya, Dipten</creatorcontrib><creatorcontrib>Li, Wuxia</creatorcontrib><creatorcontrib>Cui, Ajuan</creatorcontrib><creatorcontrib>Jiang, QianQing</creatorcontrib><creatorcontrib>Gu, Chang-zhi</creatorcontrib><title>A training effect on electrical properties in nanoscale BiFeO3</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ∼1.0 MV cm−1 across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices.</description><subject>Bismuth - chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Electric Conductivity</subject><subject>Electron Transport</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Molecular Conformation</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Temperature</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU1LAzEQhoMotlb_QslF8LI238lehFr8gkIveg7Z3URSttk12T34783SqjAww_AwM--8ACwxusdIqRUquSwYU2xF2ArTHFwifgbmmApcCE7UOZj_QTNwldIeIYwVwZdgRiiTigk1Bw9rOETjgw-f0Dpn6wF2Ado2F9HXpoV97HobB28T9AEGE7qU2xY--me7o9fgwpk22ZtTXoCP56f3zWux3b28bdbbwhPFhoIgywR3JZOsFDVDyNUOOV4bVfKGysowJStXVcJS5ypnOKcWK9pIxytOG0YX4O44N5_zNdo06INPtW1bE2w3Jo0pLrEoES8zujyhY3Wwje6jP5j4rX81Z-D2BJhJiosm1D79c5JgwojIHDlyvuv1vhtjyAo1RnoyQE-_1dNvNWF5vT4aQH8ANxN0bA</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Goswami, Sudipta</creator><creator>Bhattacharya, Dipten</creator><creator>Li, Wuxia</creator><creator>Cui, Ajuan</creator><creator>Jiang, QianQing</creator><creator>Gu, Chang-zhi</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130405</creationdate><title>A training effect on electrical properties in nanoscale BiFeO3</title><author>Goswami, Sudipta ; Bhattacharya, Dipten ; Li, Wuxia ; Cui, Ajuan ; Jiang, QianQing ; Gu, Chang-zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-20e465f947496c400fcf0f5ca895d37ba487bfbb6e3ffbfa553e183d7f5b53d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bismuth - chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Electric Conductivity</topic><topic>Electron Transport</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Molecular Conformation</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Temperature</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goswami, Sudipta</creatorcontrib><creatorcontrib>Bhattacharya, Dipten</creatorcontrib><creatorcontrib>Li, Wuxia</creatorcontrib><creatorcontrib>Cui, Ajuan</creatorcontrib><creatorcontrib>Jiang, QianQing</creatorcontrib><creatorcontrib>Gu, Chang-zhi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goswami, Sudipta</au><au>Bhattacharya, Dipten</au><au>Li, Wuxia</au><au>Cui, Ajuan</au><au>Jiang, QianQing</au><au>Gu, Chang-zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A training effect on electrical properties in nanoscale BiFeO3</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>24</volume><issue>13</issue><spage>135705</spage><epage>135705</epage><pages>135705-135705</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ∼1.0 MV cm−1 across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>23478468</pmid><doi>10.1088/0957-4484/24/13/135705</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2013-04, Vol.24 (13), p.135705-135705 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_1319169059 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Bismuth - chemistry Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Diffusion in nanoscale solids Diffusion in solids Electric Conductivity Electron Transport Exact sciences and technology Ferric Compounds - chemistry Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Macromolecular Substances - chemistry Materials science Materials Testing Molecular Conformation Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructures - chemistry Nanostructures - ultrastructure Particle Size Physics Quantum wires Surface Properties Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Temperature Transport properties of condensed matter (nonelectronic) |
title | A training effect on electrical properties in nanoscale BiFeO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20training%20effect%20on%20electrical%20properties%20in%20nanoscale%20BiFeO3&rft.jtitle=Nanotechnology&rft.au=Goswami,%20Sudipta&rft.date=2013-04-05&rft.volume=24&rft.issue=13&rft.spage=135705&rft.epage=135705&rft.pages=135705-135705&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/24/13/135705&rft_dat=%3Cproquest_iop_j%3E1319169059%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319169059&rft_id=info:pmid/23478468&rfr_iscdi=true |