A training effect on electrical properties in nanoscale BiFeO3

We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2013-04, Vol.24 (13), p.135705-135705
Hauptverfasser: Goswami, Sudipta, Bhattacharya, Dipten, Li, Wuxia, Cui, Ajuan, Jiang, QianQing, Gu, Chang-zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135705
container_issue 13
container_start_page 135705
container_title Nanotechnology
container_volume 24
creator Goswami, Sudipta
Bhattacharya, Dipten
Li, Wuxia
Cui, Ajuan
Jiang, QianQing
Gu, Chang-zhi
description We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ∼1.0 MV cm−1 across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices.
doi_str_mv 10.1088/0957-4484/24/13/135705
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1319169059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319169059</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-20e465f947496c400fcf0f5ca895d37ba487bfbb6e3ffbfa553e183d7f5b53d43</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhoMotlb_QslF8LI238lehFr8gkIveg7Z3URSttk12T34783SqjAww_AwM--8ACwxusdIqRUquSwYU2xF2ArTHFwifgbmmApcCE7UOZj_QTNwldIeIYwVwZdgRiiTigk1Bw9rOETjgw-f0Dpn6wF2Ado2F9HXpoV97HobB28T9AEGE7qU2xY--me7o9fgwpk22ZtTXoCP56f3zWux3b28bdbbwhPFhoIgywR3JZOsFDVDyNUOOV4bVfKGysowJStXVcJS5ypnOKcWK9pIxytOG0YX4O44N5_zNdo06INPtW1bE2w3Jo0pLrEoES8zujyhY3Wwje6jP5j4rX81Z-D2BJhJiosm1D79c5JgwojIHDlyvuv1vhtjyAo1RnoyQE-_1dNvNWF5vT4aQH8ANxN0bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319169059</pqid></control><display><type>article</type><title>A training effect on electrical properties in nanoscale BiFeO3</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Goswami, Sudipta ; Bhattacharya, Dipten ; Li, Wuxia ; Cui, Ajuan ; Jiang, QianQing ; Gu, Chang-zhi</creator><creatorcontrib>Goswami, Sudipta ; Bhattacharya, Dipten ; Li, Wuxia ; Cui, Ajuan ; Jiang, QianQing ; Gu, Chang-zhi</creatorcontrib><description>We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ∼1.0 MV cm−1 across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/24/13/135705</identifier><identifier>PMID: 23478468</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bismuth - chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusion in nanoscale solids ; Diffusion in solids ; Electric Conductivity ; Electron Transport ; Exact sciences and technology ; Ferric Compounds - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Macromolecular Substances - chemistry ; Materials science ; Materials Testing ; Molecular Conformation ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Physics ; Quantum wires ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Temperature ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Nanotechnology, 2013-04, Vol.24 (13), p.135705-135705</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/24/13/135705/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27212426$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23478468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goswami, Sudipta</creatorcontrib><creatorcontrib>Bhattacharya, Dipten</creatorcontrib><creatorcontrib>Li, Wuxia</creatorcontrib><creatorcontrib>Cui, Ajuan</creatorcontrib><creatorcontrib>Jiang, QianQing</creatorcontrib><creatorcontrib>Gu, Chang-zhi</creatorcontrib><title>A training effect on electrical properties in nanoscale BiFeO3</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ∼1.0 MV cm−1 across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices.</description><subject>Bismuth - chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Electric Conductivity</subject><subject>Electron Transport</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Molecular Conformation</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Temperature</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU1LAzEQhoMotlb_QslF8LI238lehFr8gkIveg7Z3URSttk12T34783SqjAww_AwM--8ACwxusdIqRUquSwYU2xF2ArTHFwifgbmmApcCE7UOZj_QTNwldIeIYwVwZdgRiiTigk1Bw9rOETjgw-f0Dpn6wF2Ado2F9HXpoV97HobB28T9AEGE7qU2xY--me7o9fgwpk22ZtTXoCP56f3zWux3b28bdbbwhPFhoIgywR3JZOsFDVDyNUOOV4bVfKGysowJStXVcJS5ypnOKcWK9pIxytOG0YX4O44N5_zNdo06INPtW1bE2w3Jo0pLrEoES8zujyhY3Wwje6jP5j4rX81Z-D2BJhJiosm1D79c5JgwojIHDlyvuv1vhtjyAo1RnoyQE-_1dNvNWF5vT4aQH8ANxN0bA</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Goswami, Sudipta</creator><creator>Bhattacharya, Dipten</creator><creator>Li, Wuxia</creator><creator>Cui, Ajuan</creator><creator>Jiang, QianQing</creator><creator>Gu, Chang-zhi</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130405</creationdate><title>A training effect on electrical properties in nanoscale BiFeO3</title><author>Goswami, Sudipta ; Bhattacharya, Dipten ; Li, Wuxia ; Cui, Ajuan ; Jiang, QianQing ; Gu, Chang-zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-20e465f947496c400fcf0f5ca895d37ba487bfbb6e3ffbfa553e183d7f5b53d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bismuth - chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Electric Conductivity</topic><topic>Electron Transport</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Molecular Conformation</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Temperature</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goswami, Sudipta</creatorcontrib><creatorcontrib>Bhattacharya, Dipten</creatorcontrib><creatorcontrib>Li, Wuxia</creatorcontrib><creatorcontrib>Cui, Ajuan</creatorcontrib><creatorcontrib>Jiang, QianQing</creatorcontrib><creatorcontrib>Gu, Chang-zhi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goswami, Sudipta</au><au>Bhattacharya, Dipten</au><au>Li, Wuxia</au><au>Cui, Ajuan</au><au>Jiang, QianQing</au><au>Gu, Chang-zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A training effect on electrical properties in nanoscale BiFeO3</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>24</volume><issue>13</issue><spage>135705</spage><epage>135705</epage><pages>135705-135705</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ∼1.0 MV cm−1 across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>23478468</pmid><doi>10.1088/0957-4484/24/13/135705</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2013-04, Vol.24 (13), p.135705-135705
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_1319169059
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Bismuth - chemistry
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Diffusion in nanoscale solids
Diffusion in solids
Electric Conductivity
Electron Transport
Exact sciences and technology
Ferric Compounds - chemistry
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Macromolecular Substances - chemistry
Materials science
Materials Testing
Molecular Conformation
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Physics
Quantum wires
Surface Properties
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Temperature
Transport properties of condensed matter (nonelectronic)
title A training effect on electrical properties in nanoscale BiFeO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20training%20effect%20on%20electrical%20properties%20in%20nanoscale%20BiFeO3&rft.jtitle=Nanotechnology&rft.au=Goswami,%20Sudipta&rft.date=2013-04-05&rft.volume=24&rft.issue=13&rft.spage=135705&rft.epage=135705&rft.pages=135705-135705&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/24/13/135705&rft_dat=%3Cproquest_iop_j%3E1319169059%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319169059&rft_id=info:pmid/23478468&rfr_iscdi=true