TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation
The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligome...
Gespeichert in:
Veröffentlicht in: | Protein engineering, design and selection design and selection, 2013-03, Vol.26 (3), p.225-242 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 3 |
container_start_page | 225 |
container_title | Protein engineering, design and selection |
container_volume | 26 |
creator | Speck, Janina Räuber, Christina Kükenshöner, Tim Niemöller, Christoph Mueller, Katelyn J. Schleberger, Paula Dondapati, Padmarupa Hecky, Jochen Arndt, Katja M. Müller, Kristian M. |
description | The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein–protein interactions enable TAT-dependent translocation of the resistance marker TEM β-lactamase (βL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and βL, (ii) dimeric or oligomeric protein–protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the βL, respectively and (iii) heterotrimeric protein–protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split βL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections. |
doi_str_mv | 10.1093/protein/gzs098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1318689623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/gzs098</oup_id><sourcerecordid>1288310122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-628c0d159b8b4b6dfee3f1dae41f66b561e239372ceae45e70d0dba73ebd1c113</originalsourceid><addsrcrecordid>eNqFkUlPwzAQhS0EYr9yRD6CRIvHTp3kiCo2qRKXco4ce9IYsmE7Yjnzw0mbwpXTjEbfe5qZR8gZsCmwVFx3rg1om-vVl2dpskMOIY5gwkBEu389lwfkyPsXxriMAfbJARecizSCQ_K9vFnS0gZdlvYVHfVYoQ62bSh-dKoxaGhoadFWxjYrWmLVofNXtO6rYGt0VlPbBHRqo_F0UFDd1rlt1Dh4t6Gk2yVp4dSqxiaska7CdbvBTsheoSqPp9t6TJ7vbpfzh8ni6f5xfrOYaCF5mEieaGZgluZJHuXSFIiiAKMwgkLKfCYBh6tEzDUOsxnGzDCTq1hgbkADiGNyMfoOC7316ENWW6-xqlSDbe8zEJDIJJVc_I_yJBEw_JYP6HREtWu9d1hknbO1cp8ZsGwdUra9PxtDGgTnW-8-r9H84b-pDMDlCLR995_ZD1uJoo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288310122</pqid></control><display><type>article</type><title>TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Speck, Janina ; Räuber, Christina ; Kükenshöner, Tim ; Niemöller, Christoph ; Mueller, Katelyn J. ; Schleberger, Paula ; Dondapati, Padmarupa ; Hecky, Jochen ; Arndt, Katja M. ; Müller, Kristian M.</creator><creatorcontrib>Speck, Janina ; Räuber, Christina ; Kükenshöner, Tim ; Niemöller, Christoph ; Mueller, Katelyn J. ; Schleberger, Paula ; Dondapati, Padmarupa ; Hecky, Jochen ; Arndt, Katja M. ; Müller, Kristian M.</creatorcontrib><description>The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein–protein interactions enable TAT-dependent translocation of the resistance marker TEM β-lactamase (βL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and βL, (ii) dimeric or oligomeric protein–protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the βL, respectively and (iii) heterotrimeric protein–protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split βL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.</description><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/gzs098</identifier><identifier>PMID: 23223941</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arginine - genetics ; Arginine - metabolism ; beta -Lactamase ; beta-Lactamases - chemistry ; beta-Lactamases - genetics ; beta-Lactamases - metabolism ; Cloning, Molecular - methods ; Cytoplasmic membranes ; directed evolution ; Enhancers ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fitness ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Microphthalmia-associated transcription factor ; Models, Molecular ; Protein Engineering - methods ; Protein Folding ; Protein interaction ; Protein Interaction Mapping ; Protein Multimerization ; Protein Transport ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Translocation</subject><ispartof>Protein engineering, design and selection, 2013-03, Vol.26 (3), p.225-242</ispartof><rights>The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-628c0d159b8b4b6dfee3f1dae41f66b561e239372ceae45e70d0dba73ebd1c113</citedby><cites>FETCH-LOGICAL-c362t-628c0d159b8b4b6dfee3f1dae41f66b561e239372ceae45e70d0dba73ebd1c113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23223941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Speck, Janina</creatorcontrib><creatorcontrib>Räuber, Christina</creatorcontrib><creatorcontrib>Kükenshöner, Tim</creatorcontrib><creatorcontrib>Niemöller, Christoph</creatorcontrib><creatorcontrib>Mueller, Katelyn J.</creatorcontrib><creatorcontrib>Schleberger, Paula</creatorcontrib><creatorcontrib>Dondapati, Padmarupa</creatorcontrib><creatorcontrib>Hecky, Jochen</creatorcontrib><creatorcontrib>Arndt, Katja M.</creatorcontrib><creatorcontrib>Müller, Kristian M.</creatorcontrib><title>TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation</title><title>Protein engineering, design and selection</title><addtitle>Protein Eng Des Sel</addtitle><description>The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein–protein interactions enable TAT-dependent translocation of the resistance marker TEM β-lactamase (βL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and βL, (ii) dimeric or oligomeric protein–protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the βL, respectively and (iii) heterotrimeric protein–protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split βL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.</description><subject>Arginine - genetics</subject><subject>Arginine - metabolism</subject><subject>beta -Lactamase</subject><subject>beta-Lactamases - chemistry</subject><subject>beta-Lactamases - genetics</subject><subject>beta-Lactamases - metabolism</subject><subject>Cloning, Molecular - methods</subject><subject>Cytoplasmic membranes</subject><subject>directed evolution</subject><subject>Enhancers</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fitness</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Microphthalmia-associated transcription factor</subject><subject>Models, Molecular</subject><subject>Protein Engineering - methods</subject><subject>Protein Folding</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping</subject><subject>Protein Multimerization</subject><subject>Protein Transport</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Translocation</subject><issn>1741-0126</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUlPwzAQhS0EYr9yRD6CRIvHTp3kiCo2qRKXco4ce9IYsmE7Yjnzw0mbwpXTjEbfe5qZR8gZsCmwVFx3rg1om-vVl2dpskMOIY5gwkBEu389lwfkyPsXxriMAfbJARecizSCQ_K9vFnS0gZdlvYVHfVYoQ62bSh-dKoxaGhoadFWxjYrWmLVofNXtO6rYGt0VlPbBHRqo_F0UFDd1rlt1Dh4t6Gk2yVp4dSqxiaska7CdbvBTsheoSqPp9t6TJ7vbpfzh8ni6f5xfrOYaCF5mEieaGZgluZJHuXSFIiiAKMwgkLKfCYBh6tEzDUOsxnGzDCTq1hgbkADiGNyMfoOC7316ENWW6-xqlSDbe8zEJDIJJVc_I_yJBEw_JYP6HREtWu9d1hknbO1cp8ZsGwdUra9PxtDGgTnW-8-r9H84b-pDMDlCLR995_ZD1uJoo4</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Speck, Janina</creator><creator>Räuber, Christina</creator><creator>Kükenshöner, Tim</creator><creator>Niemöller, Christoph</creator><creator>Mueller, Katelyn J.</creator><creator>Schleberger, Paula</creator><creator>Dondapati, Padmarupa</creator><creator>Hecky, Jochen</creator><creator>Arndt, Katja M.</creator><creator>Müller, Kristian M.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201303</creationdate><title>TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation</title><author>Speck, Janina ; Räuber, Christina ; Kükenshöner, Tim ; Niemöller, Christoph ; Mueller, Katelyn J. ; Schleberger, Paula ; Dondapati, Padmarupa ; Hecky, Jochen ; Arndt, Katja M. ; Müller, Kristian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-628c0d159b8b4b6dfee3f1dae41f66b561e239372ceae45e70d0dba73ebd1c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arginine - genetics</topic><topic>Arginine - metabolism</topic><topic>beta -Lactamase</topic><topic>beta-Lactamases - chemistry</topic><topic>beta-Lactamases - genetics</topic><topic>beta-Lactamases - metabolism</topic><topic>Cloning, Molecular - methods</topic><topic>Cytoplasmic membranes</topic><topic>directed evolution</topic><topic>Enhancers</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fitness</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Microphthalmia-associated transcription factor</topic><topic>Models, Molecular</topic><topic>Protein Engineering - methods</topic><topic>Protein Folding</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping</topic><topic>Protein Multimerization</topic><topic>Protein Transport</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speck, Janina</creatorcontrib><creatorcontrib>Räuber, Christina</creatorcontrib><creatorcontrib>Kükenshöner, Tim</creatorcontrib><creatorcontrib>Niemöller, Christoph</creatorcontrib><creatorcontrib>Mueller, Katelyn J.</creatorcontrib><creatorcontrib>Schleberger, Paula</creatorcontrib><creatorcontrib>Dondapati, Padmarupa</creatorcontrib><creatorcontrib>Hecky, Jochen</creatorcontrib><creatorcontrib>Arndt, Katja M.</creatorcontrib><creatorcontrib>Müller, Kristian M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Protein engineering, design and selection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speck, Janina</au><au>Räuber, Christina</au><au>Kükenshöner, Tim</au><au>Niemöller, Christoph</au><au>Mueller, Katelyn J.</au><au>Schleberger, Paula</au><au>Dondapati, Padmarupa</au><au>Hecky, Jochen</au><au>Arndt, Katja M.</au><au>Müller, Kristian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation</atitle><jtitle>Protein engineering, design and selection</jtitle><addtitle>Protein Eng Des Sel</addtitle><date>2013-03</date><risdate>2013</risdate><volume>26</volume><issue>3</issue><spage>225</spage><epage>242</epage><pages>225-242</pages><issn>1741-0126</issn><eissn>1741-0134</eissn><abstract>The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein–protein interactions enable TAT-dependent translocation of the resistance marker TEM β-lactamase (βL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and βL, (ii) dimeric or oligomeric protein–protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the βL, respectively and (iii) heterotrimeric protein–protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split βL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23223941</pmid><doi>10.1093/protein/gzs098</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-0126 |
ispartof | Protein engineering, design and selection, 2013-03, Vol.26 (3), p.225-242 |
issn | 1741-0126 1741-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_1318689623 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Arginine - genetics Arginine - metabolism beta -Lactamase beta-Lactamases - chemistry beta-Lactamases - genetics beta-Lactamases - metabolism Cloning, Molecular - methods Cytoplasmic membranes directed evolution Enhancers Escherichia coli - chemistry Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fitness Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Microphthalmia-associated transcription factor Models, Molecular Protein Engineering - methods Protein Folding Protein interaction Protein Interaction Mapping Protein Multimerization Protein Transport Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Translocation |
title | TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAT%20hitchhiker%20selection%20expanded%20to%20folding%20helpers,%20multimeric%20interactions%20and%20combinations%20with%20protein%20fragment%20complementation&rft.jtitle=Protein%20engineering,%20design%20and%20selection&rft.au=Speck,%20Janina&rft.date=2013-03&rft.volume=26&rft.issue=3&rft.spage=225&rft.epage=242&rft.pages=225-242&rft.issn=1741-0126&rft.eissn=1741-0134&rft_id=info:doi/10.1093/protein/gzs098&rft_dat=%3Cproquest_cross%3E1288310122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288310122&rft_id=info:pmid/23223941&rft_oup_id=10.1093/protein/gzs098&rfr_iscdi=true |