TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation

The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein engineering, design and selection design and selection, 2013-03, Vol.26 (3), p.225-242
Hauptverfasser: Speck, Janina, Räuber, Christina, Kükenshöner, Tim, Niemöller, Christoph, Mueller, Katelyn J., Schleberger, Paula, Dondapati, Padmarupa, Hecky, Jochen, Arndt, Katja M., Müller, Kristian M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue 3
container_start_page 225
container_title Protein engineering, design and selection
container_volume 26
creator Speck, Janina
Räuber, Christina
Kükenshöner, Tim
Niemöller, Christoph
Mueller, Katelyn J.
Schleberger, Paula
Dondapati, Padmarupa
Hecky, Jochen
Arndt, Katja M.
Müller, Kristian M.
description The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein–protein interactions enable TAT-dependent translocation of the resistance marker TEM β-lactamase (βL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and βL, (ii) dimeric or oligomeric protein–protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the βL, respectively and (iii) heterotrimeric protein–protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split βL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.
doi_str_mv 10.1093/protein/gzs098
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1318689623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/gzs098</oup_id><sourcerecordid>1288310122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-628c0d159b8b4b6dfee3f1dae41f66b561e239372ceae45e70d0dba73ebd1c113</originalsourceid><addsrcrecordid>eNqFkUlPwzAQhS0EYr9yRD6CRIvHTp3kiCo2qRKXco4ce9IYsmE7Yjnzw0mbwpXTjEbfe5qZR8gZsCmwVFx3rg1om-vVl2dpskMOIY5gwkBEu389lwfkyPsXxriMAfbJARecizSCQ_K9vFnS0gZdlvYVHfVYoQ62bSh-dKoxaGhoadFWxjYrWmLVofNXtO6rYGt0VlPbBHRqo_F0UFDd1rlt1Dh4t6Gk2yVp4dSqxiaska7CdbvBTsheoSqPp9t6TJ7vbpfzh8ni6f5xfrOYaCF5mEieaGZgluZJHuXSFIiiAKMwgkLKfCYBh6tEzDUOsxnGzDCTq1hgbkADiGNyMfoOC7316ENWW6-xqlSDbe8zEJDIJJVc_I_yJBEw_JYP6HREtWu9d1hknbO1cp8ZsGwdUra9PxtDGgTnW-8-r9H84b-pDMDlCLR995_ZD1uJoo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288310122</pqid></control><display><type>article</type><title>TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Speck, Janina ; Räuber, Christina ; Kükenshöner, Tim ; Niemöller, Christoph ; Mueller, Katelyn J. ; Schleberger, Paula ; Dondapati, Padmarupa ; Hecky, Jochen ; Arndt, Katja M. ; Müller, Kristian M.</creator><creatorcontrib>Speck, Janina ; Räuber, Christina ; Kükenshöner, Tim ; Niemöller, Christoph ; Mueller, Katelyn J. ; Schleberger, Paula ; Dondapati, Padmarupa ; Hecky, Jochen ; Arndt, Katja M. ; Müller, Kristian M.</creatorcontrib><description>The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein–protein interactions enable TAT-dependent translocation of the resistance marker TEM β-lactamase (βL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and βL, (ii) dimeric or oligomeric protein–protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the βL, respectively and (iii) heterotrimeric protein–protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split βL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.</description><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/gzs098</identifier><identifier>PMID: 23223941</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arginine - genetics ; Arginine - metabolism ; beta -Lactamase ; beta-Lactamases - chemistry ; beta-Lactamases - genetics ; beta-Lactamases - metabolism ; Cloning, Molecular - methods ; Cytoplasmic membranes ; directed evolution ; Enhancers ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fitness ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Microphthalmia-associated transcription factor ; Models, Molecular ; Protein Engineering - methods ; Protein Folding ; Protein interaction ; Protein Interaction Mapping ; Protein Multimerization ; Protein Transport ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Translocation</subject><ispartof>Protein engineering, design and selection, 2013-03, Vol.26 (3), p.225-242</ispartof><rights>The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-628c0d159b8b4b6dfee3f1dae41f66b561e239372ceae45e70d0dba73ebd1c113</citedby><cites>FETCH-LOGICAL-c362t-628c0d159b8b4b6dfee3f1dae41f66b561e239372ceae45e70d0dba73ebd1c113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23223941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Speck, Janina</creatorcontrib><creatorcontrib>Räuber, Christina</creatorcontrib><creatorcontrib>Kükenshöner, Tim</creatorcontrib><creatorcontrib>Niemöller, Christoph</creatorcontrib><creatorcontrib>Mueller, Katelyn J.</creatorcontrib><creatorcontrib>Schleberger, Paula</creatorcontrib><creatorcontrib>Dondapati, Padmarupa</creatorcontrib><creatorcontrib>Hecky, Jochen</creatorcontrib><creatorcontrib>Arndt, Katja M.</creatorcontrib><creatorcontrib>Müller, Kristian M.</creatorcontrib><title>TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation</title><title>Protein engineering, design and selection</title><addtitle>Protein Eng Des Sel</addtitle><description>The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein–protein interactions enable TAT-dependent translocation of the resistance marker TEM β-lactamase (βL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and βL, (ii) dimeric or oligomeric protein–protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the βL, respectively and (iii) heterotrimeric protein–protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split βL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.</description><subject>Arginine - genetics</subject><subject>Arginine - metabolism</subject><subject>beta -Lactamase</subject><subject>beta-Lactamases - chemistry</subject><subject>beta-Lactamases - genetics</subject><subject>beta-Lactamases - metabolism</subject><subject>Cloning, Molecular - methods</subject><subject>Cytoplasmic membranes</subject><subject>directed evolution</subject><subject>Enhancers</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fitness</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Microphthalmia-associated transcription factor</subject><subject>Models, Molecular</subject><subject>Protein Engineering - methods</subject><subject>Protein Folding</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping</subject><subject>Protein Multimerization</subject><subject>Protein Transport</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Translocation</subject><issn>1741-0126</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUlPwzAQhS0EYr9yRD6CRIvHTp3kiCo2qRKXco4ce9IYsmE7Yjnzw0mbwpXTjEbfe5qZR8gZsCmwVFx3rg1om-vVl2dpskMOIY5gwkBEu389lwfkyPsXxriMAfbJARecizSCQ_K9vFnS0gZdlvYVHfVYoQ62bSh-dKoxaGhoadFWxjYrWmLVofNXtO6rYGt0VlPbBHRqo_F0UFDd1rlt1Dh4t6Gk2yVp4dSqxiaska7CdbvBTsheoSqPp9t6TJ7vbpfzh8ni6f5xfrOYaCF5mEieaGZgluZJHuXSFIiiAKMwgkLKfCYBh6tEzDUOsxnGzDCTq1hgbkADiGNyMfoOC7316ENWW6-xqlSDbe8zEJDIJJVc_I_yJBEw_JYP6HREtWu9d1hknbO1cp8ZsGwdUra9PxtDGgTnW-8-r9H84b-pDMDlCLR995_ZD1uJoo4</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Speck, Janina</creator><creator>Räuber, Christina</creator><creator>Kükenshöner, Tim</creator><creator>Niemöller, Christoph</creator><creator>Mueller, Katelyn J.</creator><creator>Schleberger, Paula</creator><creator>Dondapati, Padmarupa</creator><creator>Hecky, Jochen</creator><creator>Arndt, Katja M.</creator><creator>Müller, Kristian M.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201303</creationdate><title>TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation</title><author>Speck, Janina ; Räuber, Christina ; Kükenshöner, Tim ; Niemöller, Christoph ; Mueller, Katelyn J. ; Schleberger, Paula ; Dondapati, Padmarupa ; Hecky, Jochen ; Arndt, Katja M. ; Müller, Kristian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-628c0d159b8b4b6dfee3f1dae41f66b561e239372ceae45e70d0dba73ebd1c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arginine - genetics</topic><topic>Arginine - metabolism</topic><topic>beta -Lactamase</topic><topic>beta-Lactamases - chemistry</topic><topic>beta-Lactamases - genetics</topic><topic>beta-Lactamases - metabolism</topic><topic>Cloning, Molecular - methods</topic><topic>Cytoplasmic membranes</topic><topic>directed evolution</topic><topic>Enhancers</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fitness</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Microphthalmia-associated transcription factor</topic><topic>Models, Molecular</topic><topic>Protein Engineering - methods</topic><topic>Protein Folding</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping</topic><topic>Protein Multimerization</topic><topic>Protein Transport</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speck, Janina</creatorcontrib><creatorcontrib>Räuber, Christina</creatorcontrib><creatorcontrib>Kükenshöner, Tim</creatorcontrib><creatorcontrib>Niemöller, Christoph</creatorcontrib><creatorcontrib>Mueller, Katelyn J.</creatorcontrib><creatorcontrib>Schleberger, Paula</creatorcontrib><creatorcontrib>Dondapati, Padmarupa</creatorcontrib><creatorcontrib>Hecky, Jochen</creatorcontrib><creatorcontrib>Arndt, Katja M.</creatorcontrib><creatorcontrib>Müller, Kristian M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Protein engineering, design and selection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speck, Janina</au><au>Räuber, Christina</au><au>Kükenshöner, Tim</au><au>Niemöller, Christoph</au><au>Mueller, Katelyn J.</au><au>Schleberger, Paula</au><au>Dondapati, Padmarupa</au><au>Hecky, Jochen</au><au>Arndt, Katja M.</au><au>Müller, Kristian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation</atitle><jtitle>Protein engineering, design and selection</jtitle><addtitle>Protein Eng Des Sel</addtitle><date>2013-03</date><risdate>2013</risdate><volume>26</volume><issue>3</issue><spage>225</spage><epage>242</epage><pages>225-242</pages><issn>1741-0126</issn><eissn>1741-0134</eissn><abstract>The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein–protein interactions enable TAT-dependent translocation of the resistance marker TEM β-lactamase (βL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and βL, (ii) dimeric or oligomeric protein–protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the βL, respectively and (iii) heterotrimeric protein–protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split βL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23223941</pmid><doi>10.1093/protein/gzs098</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1741-0126
ispartof Protein engineering, design and selection, 2013-03, Vol.26 (3), p.225-242
issn 1741-0126
1741-0134
language eng
recordid cdi_proquest_miscellaneous_1318689623
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Arginine - genetics
Arginine - metabolism
beta -Lactamase
beta-Lactamases - chemistry
beta-Lactamases - genetics
beta-Lactamases - metabolism
Cloning, Molecular - methods
Cytoplasmic membranes
directed evolution
Enhancers
Escherichia coli - chemistry
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fitness
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Microphthalmia-associated transcription factor
Models, Molecular
Protein Engineering - methods
Protein Folding
Protein interaction
Protein Interaction Mapping
Protein Multimerization
Protein Transport
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Translocation
title TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAT%20hitchhiker%20selection%20expanded%20to%20folding%20helpers,%20multimeric%20interactions%20and%20combinations%20with%20protein%20fragment%20complementation&rft.jtitle=Protein%20engineering,%20design%20and%20selection&rft.au=Speck,%20Janina&rft.date=2013-03&rft.volume=26&rft.issue=3&rft.spage=225&rft.epage=242&rft.pages=225-242&rft.issn=1741-0126&rft.eissn=1741-0134&rft_id=info:doi/10.1093/protein/gzs098&rft_dat=%3Cproquest_cross%3E1288310122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288310122&rft_id=info:pmid/23223941&rft_oup_id=10.1093/protein/gzs098&rfr_iscdi=true