Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation

Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-03, Vol.47 (6), p.2966-2973
Hauptverfasser: Kim, Yu Chang, Kim, Young, Oh, Dongwook, Lee, Kong Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2973
container_issue 6
container_start_page 2966
container_title Environmental science & technology
container_volume 47
creator Kim, Yu Chang
Kim, Young
Oh, Dongwook
Lee, Kong Hoon
description Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m–2h–1 and 1.0 W/m2 respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.
doi_str_mv 10.1021/es304060d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1318093169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923340701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-55fada1053532ae285809b133c115c4e20b5c779530d29722e7710c91c47558d3</originalsourceid><addsrcrecordid>eNpl0U1v1DAQBmALgehSOPAHkCWEBIfAjB2v4yOqSqnUqhUfglvktScoVRIvnoSPf4_ZLi2Ckw9-9Hr8jhCPEV4iKHxFrKGGNcQ7YoVGQWUag3fFCgB15fT684F4wHwFAEpDc18cKK1do2pYCT7-saXcjzTNfpCn0zfiuf_i5z5NMnXSy_fbPvuh-pSWKcrLTMxLpuodzT5HivKCx8Q9y3MaN9lPJM9TXAaSXcq7u7kP8jJ9pyxPaKK8C34o7nV-YHq0Pw_FxzfHH47eVmcXJ6dHr88qX2s3V8Z0PnoEo41WnlRjGnAb1DogmlCTgo0J1jqjISpnlSJrEYLDUFtjmqgPxfPr3G1OX5fysXbsOdAwlDnTwi1qLIka167Qp__Qq7TkqUy3U8ZZ0E1RL65VyIk5U9duS3U-_2wR2t-baG82UeyTfeKyGSneyD_VF_BsDzwHP3SlvdDzrbNom7Wrb50P_NdU_z34CztSmzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318597038</pqid></control><display><type>article</type><title>Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kim, Yu Chang ; Kim, Young ; Oh, Dongwook ; Lee, Kong Hoon</creator><creatorcontrib>Kim, Yu Chang ; Kim, Young ; Oh, Dongwook ; Lee, Kong Hoon</creatorcontrib><description>Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m–2h–1 and 1.0 W/m2 respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es304060d</identifier><identifier>PMID: 23398240</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Alternative energy ; Applied sciences ; Electricity generation ; Energy ; Energy of waters: ocean thermal energy, wave and tidal energy, etc ; Equipment Design ; Exact sciences and technology ; Membranes ; Membranes, Artificial ; Natural energy ; Optimization techniques ; Osmosis ; Osmotic Pressure ; Permeability ; Porosity ; Pressure ; Renewable Energy ; Salinity ; Sodium Chloride - chemistry ; Water - chemistry</subject><ispartof>Environmental science &amp; technology, 2013-03, Vol.47 (6), p.2966-2973</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 19, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-55fada1053532ae285809b133c115c4e20b5c779530d29722e7710c91c47558d3</citedby><cites>FETCH-LOGICAL-a439t-55fada1053532ae285809b133c115c4e20b5c779530d29722e7710c91c47558d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es304060d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es304060d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27178694$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23398240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yu Chang</creatorcontrib><creatorcontrib>Kim, Young</creatorcontrib><creatorcontrib>Oh, Dongwook</creatorcontrib><creatorcontrib>Lee, Kong Hoon</creatorcontrib><title>Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m–2h–1 and 1.0 W/m2 respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.</description><subject>Alternative energy</subject><subject>Applied sciences</subject><subject>Electricity generation</subject><subject>Energy</subject><subject>Energy of waters: ocean thermal energy, wave and tidal energy, etc</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Natural energy</subject><subject>Optimization techniques</subject><subject>Osmosis</subject><subject>Osmotic Pressure</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Renewable Energy</subject><subject>Salinity</subject><subject>Sodium Chloride - chemistry</subject><subject>Water - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0U1v1DAQBmALgehSOPAHkCWEBIfAjB2v4yOqSqnUqhUfglvktScoVRIvnoSPf4_ZLi2Ckw9-9Hr8jhCPEV4iKHxFrKGGNcQ7YoVGQWUag3fFCgB15fT684F4wHwFAEpDc18cKK1do2pYCT7-saXcjzTNfpCn0zfiuf_i5z5NMnXSy_fbPvuh-pSWKcrLTMxLpuodzT5HivKCx8Q9y3MaN9lPJM9TXAaSXcq7u7kP8jJ9pyxPaKK8C34o7nV-YHq0Pw_FxzfHH47eVmcXJ6dHr88qX2s3V8Z0PnoEo41WnlRjGnAb1DogmlCTgo0J1jqjISpnlSJrEYLDUFtjmqgPxfPr3G1OX5fysXbsOdAwlDnTwi1qLIka167Qp__Qq7TkqUy3U8ZZ0E1RL65VyIk5U9duS3U-_2wR2t-baG82UeyTfeKyGSneyD_VF_BsDzwHP3SlvdDzrbNom7Wrb50P_NdU_z34CztSmzo</recordid><startdate>20130319</startdate><enddate>20130319</enddate><creator>Kim, Yu Chang</creator><creator>Kim, Young</creator><creator>Oh, Dongwook</creator><creator>Lee, Kong Hoon</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20130319</creationdate><title>Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation</title><author>Kim, Yu Chang ; Kim, Young ; Oh, Dongwook ; Lee, Kong Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-55fada1053532ae285809b133c115c4e20b5c779530d29722e7710c91c47558d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative energy</topic><topic>Applied sciences</topic><topic>Electricity generation</topic><topic>Energy</topic><topic>Energy of waters: ocean thermal energy, wave and tidal energy, etc</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Natural energy</topic><topic>Optimization techniques</topic><topic>Osmosis</topic><topic>Osmotic Pressure</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Renewable Energy</topic><topic>Salinity</topic><topic>Sodium Chloride - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yu Chang</creatorcontrib><creatorcontrib>Kim, Young</creatorcontrib><creatorcontrib>Oh, Dongwook</creatorcontrib><creatorcontrib>Lee, Kong Hoon</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yu Chang</au><au>Kim, Young</au><au>Oh, Dongwook</au><au>Lee, Kong Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-03-19</date><risdate>2013</risdate><volume>47</volume><issue>6</issue><spage>2966</spage><epage>2973</epage><pages>2966-2973</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m–2h–1 and 1.0 W/m2 respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23398240</pmid><doi>10.1021/es304060d</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2013-03, Vol.47 (6), p.2966-2973
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1318093169
source ACS Publications; MEDLINE
subjects Alternative energy
Applied sciences
Electricity generation
Energy
Energy of waters: ocean thermal energy, wave and tidal energy, etc
Equipment Design
Exact sciences and technology
Membranes
Membranes, Artificial
Natural energy
Optimization techniques
Osmosis
Osmotic Pressure
Permeability
Porosity
Pressure
Renewable Energy
Salinity
Sodium Chloride - chemistry
Water - chemistry
title Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20of%20a%20Spiral-Wound%20Pressure-Retarded%20Osmosis%20Membrane%20Module%20for%20Osmotic%20Power%20Generation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Kim,%20Yu%20Chang&rft.date=2013-03-19&rft.volume=47&rft.issue=6&rft.spage=2966&rft.epage=2973&rft.pages=2966-2973&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es304060d&rft_dat=%3Cproquest_cross%3E2923340701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318597038&rft_id=info:pmid/23398240&rfr_iscdi=true