Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation
Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, n...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2013-03, Vol.47 (6), p.2966-2973 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2973 |
---|---|
container_issue | 6 |
container_start_page | 2966 |
container_title | Environmental science & technology |
container_volume | 47 |
creator | Kim, Yu Chang Kim, Young Oh, Dongwook Lee, Kong Hoon |
description | Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m–2h–1 and 1.0 W/m2 respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance. |
doi_str_mv | 10.1021/es304060d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1318093169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923340701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-55fada1053532ae285809b133c115c4e20b5c779530d29722e7710c91c47558d3</originalsourceid><addsrcrecordid>eNpl0U1v1DAQBmALgehSOPAHkCWEBIfAjB2v4yOqSqnUqhUfglvktScoVRIvnoSPf4_ZLi2Ckw9-9Hr8jhCPEV4iKHxFrKGGNcQ7YoVGQWUag3fFCgB15fT684F4wHwFAEpDc18cKK1do2pYCT7-saXcjzTNfpCn0zfiuf_i5z5NMnXSy_fbPvuh-pSWKcrLTMxLpuodzT5HivKCx8Q9y3MaN9lPJM9TXAaSXcq7u7kP8jJ9pyxPaKK8C34o7nV-YHq0Pw_FxzfHH47eVmcXJ6dHr88qX2s3V8Z0PnoEo41WnlRjGnAb1DogmlCTgo0J1jqjISpnlSJrEYLDUFtjmqgPxfPr3G1OX5fysXbsOdAwlDnTwi1qLIka167Qp__Qq7TkqUy3U8ZZ0E1RL65VyIk5U9duS3U-_2wR2t-baG82UeyTfeKyGSneyD_VF_BsDzwHP3SlvdDzrbNom7Wrb50P_NdU_z34CztSmzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318597038</pqid></control><display><type>article</type><title>Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kim, Yu Chang ; Kim, Young ; Oh, Dongwook ; Lee, Kong Hoon</creator><creatorcontrib>Kim, Yu Chang ; Kim, Young ; Oh, Dongwook ; Lee, Kong Hoon</creatorcontrib><description>Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m–2h–1 and 1.0 W/m2 respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es304060d</identifier><identifier>PMID: 23398240</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Alternative energy ; Applied sciences ; Electricity generation ; Energy ; Energy of waters: ocean thermal energy, wave and tidal energy, etc ; Equipment Design ; Exact sciences and technology ; Membranes ; Membranes, Artificial ; Natural energy ; Optimization techniques ; Osmosis ; Osmotic Pressure ; Permeability ; Porosity ; Pressure ; Renewable Energy ; Salinity ; Sodium Chloride - chemistry ; Water - chemistry</subject><ispartof>Environmental science & technology, 2013-03, Vol.47 (6), p.2966-2973</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 19, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-55fada1053532ae285809b133c115c4e20b5c779530d29722e7710c91c47558d3</citedby><cites>FETCH-LOGICAL-a439t-55fada1053532ae285809b133c115c4e20b5c779530d29722e7710c91c47558d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es304060d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es304060d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27178694$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23398240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yu Chang</creatorcontrib><creatorcontrib>Kim, Young</creatorcontrib><creatorcontrib>Oh, Dongwook</creatorcontrib><creatorcontrib>Lee, Kong Hoon</creatorcontrib><title>Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m–2h–1 and 1.0 W/m2 respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.</description><subject>Alternative energy</subject><subject>Applied sciences</subject><subject>Electricity generation</subject><subject>Energy</subject><subject>Energy of waters: ocean thermal energy, wave and tidal energy, etc</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Natural energy</subject><subject>Optimization techniques</subject><subject>Osmosis</subject><subject>Osmotic Pressure</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Renewable Energy</subject><subject>Salinity</subject><subject>Sodium Chloride - chemistry</subject><subject>Water - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0U1v1DAQBmALgehSOPAHkCWEBIfAjB2v4yOqSqnUqhUfglvktScoVRIvnoSPf4_ZLi2Ckw9-9Hr8jhCPEV4iKHxFrKGGNcQ7YoVGQWUag3fFCgB15fT684F4wHwFAEpDc18cKK1do2pYCT7-saXcjzTNfpCn0zfiuf_i5z5NMnXSy_fbPvuh-pSWKcrLTMxLpuodzT5HivKCx8Q9y3MaN9lPJM9TXAaSXcq7u7kP8jJ9pyxPaKK8C34o7nV-YHq0Pw_FxzfHH47eVmcXJ6dHr88qX2s3V8Z0PnoEo41WnlRjGnAb1DogmlCTgo0J1jqjISpnlSJrEYLDUFtjmqgPxfPr3G1OX5fysXbsOdAwlDnTwi1qLIka167Qp__Qq7TkqUy3U8ZZ0E1RL65VyIk5U9duS3U-_2wR2t-baG82UeyTfeKyGSneyD_VF_BsDzwHP3SlvdDzrbNom7Wrb50P_NdU_z34CztSmzo</recordid><startdate>20130319</startdate><enddate>20130319</enddate><creator>Kim, Yu Chang</creator><creator>Kim, Young</creator><creator>Oh, Dongwook</creator><creator>Lee, Kong Hoon</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20130319</creationdate><title>Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation</title><author>Kim, Yu Chang ; Kim, Young ; Oh, Dongwook ; Lee, Kong Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-55fada1053532ae285809b133c115c4e20b5c779530d29722e7710c91c47558d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative energy</topic><topic>Applied sciences</topic><topic>Electricity generation</topic><topic>Energy</topic><topic>Energy of waters: ocean thermal energy, wave and tidal energy, etc</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Natural energy</topic><topic>Optimization techniques</topic><topic>Osmosis</topic><topic>Osmotic Pressure</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Renewable Energy</topic><topic>Salinity</topic><topic>Sodium Chloride - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yu Chang</creatorcontrib><creatorcontrib>Kim, Young</creatorcontrib><creatorcontrib>Oh, Dongwook</creatorcontrib><creatorcontrib>Lee, Kong Hoon</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yu Chang</au><au>Kim, Young</au><au>Oh, Dongwook</au><au>Lee, Kong Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-03-19</date><risdate>2013</risdate><volume>47</volume><issue>6</issue><spage>2966</spage><epage>2973</epage><pages>2966-2973</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m–2h–1 and 1.0 W/m2 respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23398240</pmid><doi>10.1021/es304060d</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2013-03, Vol.47 (6), p.2966-2973 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1318093169 |
source | ACS Publications; MEDLINE |
subjects | Alternative energy Applied sciences Electricity generation Energy Energy of waters: ocean thermal energy, wave and tidal energy, etc Equipment Design Exact sciences and technology Membranes Membranes, Artificial Natural energy Optimization techniques Osmosis Osmotic Pressure Permeability Porosity Pressure Renewable Energy Salinity Sodium Chloride - chemistry Water - chemistry |
title | Experimental Investigation of a Spiral-Wound Pressure-Retarded Osmosis Membrane Module for Osmotic Power Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20of%20a%20Spiral-Wound%20Pressure-Retarded%20Osmosis%20Membrane%20Module%20for%20Osmotic%20Power%20Generation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Kim,%20Yu%20Chang&rft.date=2013-03-19&rft.volume=47&rft.issue=6&rft.spage=2966&rft.epage=2973&rft.pages=2966-2973&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es304060d&rft_dat=%3Cproquest_cross%3E2923340701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318597038&rft_id=info:pmid/23398240&rfr_iscdi=true |