Survey on Region Growing Segmentation and Classification for Hyperspectral Images

Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2013-01, Vol.62 (13), p.51-56
Hauptverfasser: Jerome George, S Arokia, Livingston, S John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 13
container_start_page 51
container_title International journal of computer applications
container_volume 62
creator Jerome George, S Arokia
Livingston, S John
description Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts forth a hectic workload that needs to deal with spatial data imposing large memory and computing requirements. Thus, a paramount issue in image processing area is to design and implement segmentation and classification techniques demanding optimal resources. This paper presents a survey on all prominent region growing segmentation techniques analyzing each one and thus sorting out an optimal and promising technique.
doi_str_mv 10.5120/10144-4959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315705872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315705872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1739-44a1379ec0973732453bf8a0fe03572ee5d7d6952a33d4c0c96e0d5e0b7c30583</originalsourceid><addsrcrecordid>eNpdkE9Lw0AUxBdRsNRe_AQBLyJE9283e5SibaEgWj0v281LSEmycTdR-u27sR7Ed5nH8GMYBqFrgu8FofiBYMJ5ypVQZ2iClRRplmXy_M9_iWYh7HE8puhc8Ql63Q7-Cw6Ja5M3KKsoS---q7ZMtlA20PamH03T5smiNiFURWVPVuF8sjp04EMHtvemTtaNKSFcoYvC1AFmvzpFH89P74tVunlZrhePm9QSyVTKuSFMKrCxHJOMcsF2RWZwAZgJSQFELvO5EtQwlnOLrZoDzgXgnbQMi4xN0e0pt_Puc4DQ66YKFuratOCGoAkjQkZQ0oje_EP3bvBtbKcJzWKa4Gqk7k6U9S4ED4XufNUYf9AE63Fg_TOwHgdmR88ya14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283055492</pqid></control><display><type>article</type><title>Survey on Region Growing Segmentation and Classification for Hyperspectral Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jerome George, S Arokia ; Livingston, S John</creator><creatorcontrib>Jerome George, S Arokia ; Livingston, S John</creatorcontrib><description>Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts forth a hectic workload that needs to deal with spatial data imposing large memory and computing requirements. Thus, a paramount issue in image processing area is to design and implement segmentation and classification techniques demanding optimal resources. This paper presents a survey on all prominent region growing segmentation techniques analyzing each one and thus sorting out an optimal and promising technique.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/10144-4959</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Classification ; Heart ; Image processing ; Image segmentation ; Optimization ; Segmentation ; Workload</subject><ispartof>International journal of computer applications, 2013-01, Vol.62 (13), p.51-56</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1739-44a1379ec0973732453bf8a0fe03572ee5d7d6952a33d4c0c96e0d5e0b7c30583</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jerome George, S Arokia</creatorcontrib><creatorcontrib>Livingston, S John</creatorcontrib><title>Survey on Region Growing Segmentation and Classification for Hyperspectral Images</title><title>International journal of computer applications</title><description>Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts forth a hectic workload that needs to deal with spatial data imposing large memory and computing requirements. Thus, a paramount issue in image processing area is to design and implement segmentation and classification techniques demanding optimal resources. This paper presents a survey on all prominent region growing segmentation techniques analyzing each one and thus sorting out an optimal and promising technique.</description><subject>Classification</subject><subject>Heart</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Optimization</subject><subject>Segmentation</subject><subject>Workload</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkE9Lw0AUxBdRsNRe_AQBLyJE9283e5SibaEgWj0v281LSEmycTdR-u27sR7Ed5nH8GMYBqFrgu8FofiBYMJ5ypVQZ2iClRRplmXy_M9_iWYh7HE8puhc8Ql63Q7-Cw6Ja5M3KKsoS---q7ZMtlA20PamH03T5smiNiFURWVPVuF8sjp04EMHtvemTtaNKSFcoYvC1AFmvzpFH89P74tVunlZrhePm9QSyVTKuSFMKrCxHJOMcsF2RWZwAZgJSQFELvO5EtQwlnOLrZoDzgXgnbQMi4xN0e0pt_Puc4DQ66YKFuratOCGoAkjQkZQ0oje_EP3bvBtbKcJzWKa4Gqk7k6U9S4ED4XufNUYf9AE63Fg_TOwHgdmR88ya14</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jerome George, S Arokia</creator><creator>Livingston, S John</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Survey on Region Growing Segmentation and Classification for Hyperspectral Images</title><author>Jerome George, S Arokia ; Livingston, S John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1739-44a1379ec0973732453bf8a0fe03572ee5d7d6952a33d4c0c96e0d5e0b7c30583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification</topic><topic>Heart</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Optimization</topic><topic>Segmentation</topic><topic>Workload</topic><toplevel>online_resources</toplevel><creatorcontrib>Jerome George, S Arokia</creatorcontrib><creatorcontrib>Livingston, S John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerome George, S Arokia</au><au>Livingston, S John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey on Region Growing Segmentation and Classification for Hyperspectral Images</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>62</volume><issue>13</issue><spage>51</spage><epage>56</epage><pages>51-56</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts forth a hectic workload that needs to deal with spatial data imposing large memory and computing requirements. Thus, a paramount issue in image processing area is to design and implement segmentation and classification techniques demanding optimal resources. This paper presents a survey on all prominent region growing segmentation techniques analyzing each one and thus sorting out an optimal and promising technique.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/10144-4959</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2013-01, Vol.62 (13), p.51-56
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1315705872
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Classification
Heart
Image processing
Image segmentation
Optimization
Segmentation
Workload
title Survey on Region Growing Segmentation and Classification for Hyperspectral Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20on%20Region%20Growing%20Segmentation%20and%20Classification%20for%20Hyperspectral%20Images&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Jerome%20George,%20S%20Arokia&rft.date=2013-01-01&rft.volume=62&rft.issue=13&rft.spage=51&rft.epage=56&rft.pages=51-56&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/10144-4959&rft_dat=%3Cproquest_cross%3E1315705872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283055492&rft_id=info:pmid/&rfr_iscdi=true