Survey on Region Growing Segmentation and Classification for Hyperspectral Images
Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts fo...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2013-01, Vol.62 (13), p.51-56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 13 |
container_start_page | 51 |
container_title | International journal of computer applications |
container_volume | 62 |
creator | Jerome George, S Arokia Livingston, S John |
description | Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts forth a hectic workload that needs to deal with spatial data imposing large memory and computing requirements. Thus, a paramount issue in image processing area is to design and implement segmentation and classification techniques demanding optimal resources. This paper presents a survey on all prominent region growing segmentation techniques analyzing each one and thus sorting out an optimal and promising technique. |
doi_str_mv | 10.5120/10144-4959 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315705872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315705872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1739-44a1379ec0973732453bf8a0fe03572ee5d7d6952a33d4c0c96e0d5e0b7c30583</originalsourceid><addsrcrecordid>eNpdkE9Lw0AUxBdRsNRe_AQBLyJE9283e5SibaEgWj0v281LSEmycTdR-u27sR7Ed5nH8GMYBqFrgu8FofiBYMJ5ypVQZ2iClRRplmXy_M9_iWYh7HE8puhc8Ql63Q7-Cw6Ja5M3KKsoS---q7ZMtlA20PamH03T5smiNiFURWVPVuF8sjp04EMHtvemTtaNKSFcoYvC1AFmvzpFH89P74tVunlZrhePm9QSyVTKuSFMKrCxHJOMcsF2RWZwAZgJSQFELvO5EtQwlnOLrZoDzgXgnbQMi4xN0e0pt_Puc4DQ66YKFuratOCGoAkjQkZQ0oje_EP3bvBtbKcJzWKa4Gqk7k6U9S4ED4XufNUYf9AE63Fg_TOwHgdmR88ya14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283055492</pqid></control><display><type>article</type><title>Survey on Region Growing Segmentation and Classification for Hyperspectral Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jerome George, S Arokia ; Livingston, S John</creator><creatorcontrib>Jerome George, S Arokia ; Livingston, S John</creatorcontrib><description>Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts forth a hectic workload that needs to deal with spatial data imposing large memory and computing requirements. Thus, a paramount issue in image processing area is to design and implement segmentation and classification techniques demanding optimal resources. This paper presents a survey on all prominent region growing segmentation techniques analyzing each one and thus sorting out an optimal and promising technique.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/10144-4959</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Classification ; Heart ; Image processing ; Image segmentation ; Optimization ; Segmentation ; Workload</subject><ispartof>International journal of computer applications, 2013-01, Vol.62 (13), p.51-56</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1739-44a1379ec0973732453bf8a0fe03572ee5d7d6952a33d4c0c96e0d5e0b7c30583</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jerome George, S Arokia</creatorcontrib><creatorcontrib>Livingston, S John</creatorcontrib><title>Survey on Region Growing Segmentation and Classification for Hyperspectral Images</title><title>International journal of computer applications</title><description>Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts forth a hectic workload that needs to deal with spatial data imposing large memory and computing requirements. Thus, a paramount issue in image processing area is to design and implement segmentation and classification techniques demanding optimal resources. This paper presents a survey on all prominent region growing segmentation techniques analyzing each one and thus sorting out an optimal and promising technique.</description><subject>Classification</subject><subject>Heart</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Optimization</subject><subject>Segmentation</subject><subject>Workload</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkE9Lw0AUxBdRsNRe_AQBLyJE9283e5SibaEgWj0v281LSEmycTdR-u27sR7Ed5nH8GMYBqFrgu8FofiBYMJ5ypVQZ2iClRRplmXy_M9_iWYh7HE8puhc8Ql63Q7-Cw6Ja5M3KKsoS---q7ZMtlA20PamH03T5smiNiFURWVPVuF8sjp04EMHtvemTtaNKSFcoYvC1AFmvzpFH89P74tVunlZrhePm9QSyVTKuSFMKrCxHJOMcsF2RWZwAZgJSQFELvO5EtQwlnOLrZoDzgXgnbQMi4xN0e0pt_Puc4DQ66YKFuratOCGoAkjQkZQ0oje_EP3bvBtbKcJzWKa4Gqk7k6U9S4ED4XufNUYf9AE63Fg_TOwHgdmR88ya14</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jerome George, S Arokia</creator><creator>Livingston, S John</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Survey on Region Growing Segmentation and Classification for Hyperspectral Images</title><author>Jerome George, S Arokia ; Livingston, S John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1739-44a1379ec0973732453bf8a0fe03572ee5d7d6952a33d4c0c96e0d5e0b7c30583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification</topic><topic>Heart</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Optimization</topic><topic>Segmentation</topic><topic>Workload</topic><toplevel>online_resources</toplevel><creatorcontrib>Jerome George, S Arokia</creatorcontrib><creatorcontrib>Livingston, S John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerome George, S Arokia</au><au>Livingston, S John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey on Region Growing Segmentation and Classification for Hyperspectral Images</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>62</volume><issue>13</issue><spage>51</spage><epage>56</epage><pages>51-56</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Image processing of hyperspectral image sector shows a thriving upbeat in innovation of new and novel techniques. For obvious reasons, most of these apply to the process of image segmentation and classification, in which is the heart of image processing. Augmented use of hyperspectral images puts forth a hectic workload that needs to deal with spatial data imposing large memory and computing requirements. Thus, a paramount issue in image processing area is to design and implement segmentation and classification techniques demanding optimal resources. This paper presents a survey on all prominent region growing segmentation techniques analyzing each one and thus sorting out an optimal and promising technique.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/10144-4959</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2013-01, Vol.62 (13), p.51-56 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315705872 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Classification Heart Image processing Image segmentation Optimization Segmentation Workload |
title | Survey on Region Growing Segmentation and Classification for Hyperspectral Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20on%20Region%20Growing%20Segmentation%20and%20Classification%20for%20Hyperspectral%20Images&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Jerome%20George,%20S%20Arokia&rft.date=2013-01-01&rft.volume=62&rft.issue=13&rft.spage=51&rft.epage=56&rft.pages=51-56&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/10144-4959&rft_dat=%3Cproquest_cross%3E1315705872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283055492&rft_id=info:pmid/&rfr_iscdi=true |