A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications
The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of p...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2013-06, Vol.18 (3), p.981-989 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 989 |
---|---|
container_issue | 3 |
container_start_page | 981 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 18 |
creator | Yanding Qin Yanling Tian Dawei Zhang Shirinzadeh, B. Fatikow, S. |
description | The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of piezoelectric actuators. However, for the rate-dependent PI model, the applicable valid inversion methodology is not yet available. Although simply replacing all the rate-independent terms in the conventional inversion law with the rate-dependent terms can achieve acceptable results at very slow trajectories. However, a large theoretical modeling error is inevitable at fast trajectories, which is investigated through simulations. This paper proposes a new direct approach to derive the inverse PI model directly from experimental data. As no inversion calculation is involved, the proposed direct approach is efficient and the theoretical modeling error can be avoided. In order to validate the accuracy of the direct approach, a number of experiments have been implemented on a piezo-driven compliant mechanism by utilizing the inverse PI model as a feedforward controller. The tracking performance of the mechanism is significantly improved by the direct approach. |
doi_str_mv | 10.1109/TMECH.2012.2194301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315677781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6196228</ieee_id><sourcerecordid>2872066781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8274389c91be2148615b4c43979f1adbc14b7fb21d84825d2af6164d75c096223</originalsourceid><addsrcrecordid>eNpdkUtPwzAQhCMEEs8_ABdLXLikeG0nTo5VKRSJAgeQuFmOswFXaVzstAh-Pe5DHDjtHOYbzWqS5BzoAICW1y_T8WgyYBTYgEEpOIW95CgKSCmIt_2oacFTIXh2mByHMKOUCqBwlPwMyaNbYUturEfTk_tuhT4gmboaW9u9k-Fi4Z02H6Rxnky-Q48egw1k5OYL7ILureuIa8izxR-Hbczw1pCh6Ze6j4TtyC1iHeEv7et1WmvNBgqnyUGj24Bnu3uSvN6OX0aT9OHp7n40fEhN7NunBZOCF6UpoUIGosghq4QRvJRlA7quDIhKNhWDuhAFy2qmmxxyUcvM0DJnjJ8kV9vc-MjnEkOv5jYYbFvdoVsGBRyyXEpZQLRe_rPO3NJ3sZ0CJhnNZFby6GJbl_EuBI-NWng71_5bAVXrOdRmDrWeQ-3miNDFFrKI-AfksK5Y8F9qWoaZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272057593</pqid></control><display><type>article</type><title>A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Yanding Qin ; Yanling Tian ; Dawei Zhang ; Shirinzadeh, B. ; Fatikow, S.</creator><creatorcontrib>Yanding Qin ; Yanling Tian ; Dawei Zhang ; Shirinzadeh, B. ; Fatikow, S.</creatorcontrib><description>The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of piezoelectric actuators. However, for the rate-dependent PI model, the applicable valid inversion methodology is not yet available. Although simply replacing all the rate-independent terms in the conventional inversion law with the rate-dependent terms can achieve acceptable results at very slow trajectories. However, a large theoretical modeling error is inevitable at fast trajectories, which is investigated through simulations. This paper proposes a new direct approach to derive the inverse PI model directly from experimental data. As no inversion calculation is involved, the proposed direct approach is efficient and the theoretical modeling error can be avoided. In order to validate the accuracy of the direct approach, a number of experiments have been implemented on a piezo-driven compliant mechanism by utilizing the inverse PI model as a feedforward controller. The tracking performance of the mechanism is significantly improved by the direct approach.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2012.2194301</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compliant mechanism ; Control systems ; Control theory ; Feedforward ; Feedforward neural networks ; Hysteresis ; hysteresis reduction ; Inverse ; inverse modeling ; Inversions ; Mathematical model ; Mechanical engineering ; Piezoelectric actuators ; Polyimide resins ; Polynomials ; Prandtl-Ishlinskii (PI) ; rate-dependent ; Trajectory ; Vectors</subject><ispartof>IEEE/ASME transactions on mechatronics, 2013-06, Vol.18 (3), p.981-989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8274389c91be2148615b4c43979f1adbc14b7fb21d84825d2af6164d75c096223</citedby><cites>FETCH-LOGICAL-c443t-8274389c91be2148615b4c43979f1adbc14b7fb21d84825d2af6164d75c096223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6196228$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6196228$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yanding Qin</creatorcontrib><creatorcontrib>Yanling Tian</creatorcontrib><creatorcontrib>Dawei Zhang</creatorcontrib><creatorcontrib>Shirinzadeh, B.</creatorcontrib><creatorcontrib>Fatikow, S.</creatorcontrib><title>A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of piezoelectric actuators. However, for the rate-dependent PI model, the applicable valid inversion methodology is not yet available. Although simply replacing all the rate-independent terms in the conventional inversion law with the rate-dependent terms can achieve acceptable results at very slow trajectories. However, a large theoretical modeling error is inevitable at fast trajectories, which is investigated through simulations. This paper proposes a new direct approach to derive the inverse PI model directly from experimental data. As no inversion calculation is involved, the proposed direct approach is efficient and the theoretical modeling error can be avoided. In order to validate the accuracy of the direct approach, a number of experiments have been implemented on a piezo-driven compliant mechanism by utilizing the inverse PI model as a feedforward controller. The tracking performance of the mechanism is significantly improved by the direct approach.</description><subject>Compliant mechanism</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Feedforward</subject><subject>Feedforward neural networks</subject><subject>Hysteresis</subject><subject>hysteresis reduction</subject><subject>Inverse</subject><subject>inverse modeling</subject><subject>Inversions</subject><subject>Mathematical model</subject><subject>Mechanical engineering</subject><subject>Piezoelectric actuators</subject><subject>Polyimide resins</subject><subject>Polynomials</subject><subject>Prandtl-Ishlinskii (PI)</subject><subject>rate-dependent</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtPwzAQhCMEEs8_ABdLXLikeG0nTo5VKRSJAgeQuFmOswFXaVzstAh-Pe5DHDjtHOYbzWqS5BzoAICW1y_T8WgyYBTYgEEpOIW95CgKSCmIt_2oacFTIXh2mByHMKOUCqBwlPwMyaNbYUturEfTk_tuhT4gmboaW9u9k-Fi4Z02H6Rxnky-Q48egw1k5OYL7ILureuIa8izxR-Hbczw1pCh6Ze6j4TtyC1iHeEv7et1WmvNBgqnyUGj24Bnu3uSvN6OX0aT9OHp7n40fEhN7NunBZOCF6UpoUIGosghq4QRvJRlA7quDIhKNhWDuhAFy2qmmxxyUcvM0DJnjJ8kV9vc-MjnEkOv5jYYbFvdoVsGBRyyXEpZQLRe_rPO3NJ3sZ0CJhnNZFby6GJbl_EuBI-NWng71_5bAVXrOdRmDrWeQ-3miNDFFrKI-AfksK5Y8F9qWoaZ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Yanding Qin</creator><creator>Yanling Tian</creator><creator>Dawei Zhang</creator><creator>Shirinzadeh, B.</creator><creator>Fatikow, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20130601</creationdate><title>A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications</title><author>Yanding Qin ; Yanling Tian ; Dawei Zhang ; Shirinzadeh, B. ; Fatikow, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8274389c91be2148615b4c43979f1adbc14b7fb21d84825d2af6164d75c096223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Compliant mechanism</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Feedforward</topic><topic>Feedforward neural networks</topic><topic>Hysteresis</topic><topic>hysteresis reduction</topic><topic>Inverse</topic><topic>inverse modeling</topic><topic>Inversions</topic><topic>Mathematical model</topic><topic>Mechanical engineering</topic><topic>Piezoelectric actuators</topic><topic>Polyimide resins</topic><topic>Polynomials</topic><topic>Prandtl-Ishlinskii (PI)</topic><topic>rate-dependent</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanding Qin</creatorcontrib><creatorcontrib>Yanling Tian</creatorcontrib><creatorcontrib>Dawei Zhang</creatorcontrib><creatorcontrib>Shirinzadeh, B.</creatorcontrib><creatorcontrib>Fatikow, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yanding Qin</au><au>Yanling Tian</au><au>Dawei Zhang</au><au>Shirinzadeh, B.</au><au>Fatikow, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>18</volume><issue>3</issue><spage>981</spage><epage>989</epage><pages>981-989</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of piezoelectric actuators. However, for the rate-dependent PI model, the applicable valid inversion methodology is not yet available. Although simply replacing all the rate-independent terms in the conventional inversion law with the rate-dependent terms can achieve acceptable results at very slow trajectories. However, a large theoretical modeling error is inevitable at fast trajectories, which is investigated through simulations. This paper proposes a new direct approach to derive the inverse PI model directly from experimental data. As no inversion calculation is involved, the proposed direct approach is efficient and the theoretical modeling error can be avoided. In order to validate the accuracy of the direct approach, a number of experiments have been implemented on a piezo-driven compliant mechanism by utilizing the inverse PI model as a feedforward controller. The tracking performance of the mechanism is significantly improved by the direct approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2012.2194301</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2013-06, Vol.18 (3), p.981-989 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_miscellaneous_1315677781 |
source | IEEE Electronic Library (IEL) |
subjects | Compliant mechanism Control systems Control theory Feedforward Feedforward neural networks Hysteresis hysteresis reduction Inverse inverse modeling Inversions Mathematical model Mechanical engineering Piezoelectric actuators Polyimide resins Polynomials Prandtl-Ishlinskii (PI) rate-dependent Trajectory Vectors |
title | A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Direct%20Inverse%20Modeling%20Approach%20for%20Hysteresis%20Compensation%20of%20Piezoelectric%20Actuator%20in%20Feedforward%20Applications&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Yanding%20Qin&rft.date=2013-06-01&rft.volume=18&rft.issue=3&rft.spage=981&rft.epage=989&rft.pages=981-989&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2012.2194301&rft_dat=%3Cproquest_RIE%3E2872066781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272057593&rft_id=info:pmid/&rft_ieee_id=6196228&rfr_iscdi=true |