A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications

The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2013-06, Vol.18 (3), p.981-989
Hauptverfasser: Yanding Qin, Yanling Tian, Dawei Zhang, Shirinzadeh, B., Fatikow, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 3
container_start_page 981
container_title IEEE/ASME transactions on mechatronics
container_volume 18
creator Yanding Qin
Yanling Tian
Dawei Zhang
Shirinzadeh, B.
Fatikow, S.
description The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of piezoelectric actuators. However, for the rate-dependent PI model, the applicable valid inversion methodology is not yet available. Although simply replacing all the rate-independent terms in the conventional inversion law with the rate-dependent terms can achieve acceptable results at very slow trajectories. However, a large theoretical modeling error is inevitable at fast trajectories, which is investigated through simulations. This paper proposes a new direct approach to derive the inverse PI model directly from experimental data. As no inversion calculation is involved, the proposed direct approach is efficient and the theoretical modeling error can be avoided. In order to validate the accuracy of the direct approach, a number of experiments have been implemented on a piezo-driven compliant mechanism by utilizing the inverse PI model as a feedforward controller. The tracking performance of the mechanism is significantly improved by the direct approach.
doi_str_mv 10.1109/TMECH.2012.2194301
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315677781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6196228</ieee_id><sourcerecordid>2872066781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8274389c91be2148615b4c43979f1adbc14b7fb21d84825d2af6164d75c096223</originalsourceid><addsrcrecordid>eNpdkUtPwzAQhCMEEs8_ABdLXLikeG0nTo5VKRSJAgeQuFmOswFXaVzstAh-Pe5DHDjtHOYbzWqS5BzoAICW1y_T8WgyYBTYgEEpOIW95CgKSCmIt_2oacFTIXh2mByHMKOUCqBwlPwMyaNbYUturEfTk_tuhT4gmboaW9u9k-Fi4Z02H6Rxnky-Q48egw1k5OYL7ILureuIa8izxR-Hbczw1pCh6Ze6j4TtyC1iHeEv7et1WmvNBgqnyUGj24Bnu3uSvN6OX0aT9OHp7n40fEhN7NunBZOCF6UpoUIGosghq4QRvJRlA7quDIhKNhWDuhAFy2qmmxxyUcvM0DJnjJ8kV9vc-MjnEkOv5jYYbFvdoVsGBRyyXEpZQLRe_rPO3NJ3sZ0CJhnNZFby6GJbl_EuBI-NWng71_5bAVXrOdRmDrWeQ-3miNDFFrKI-AfksK5Y8F9qWoaZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272057593</pqid></control><display><type>article</type><title>A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Yanding Qin ; Yanling Tian ; Dawei Zhang ; Shirinzadeh, B. ; Fatikow, S.</creator><creatorcontrib>Yanding Qin ; Yanling Tian ; Dawei Zhang ; Shirinzadeh, B. ; Fatikow, S.</creatorcontrib><description>The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of piezoelectric actuators. However, for the rate-dependent PI model, the applicable valid inversion methodology is not yet available. Although simply replacing all the rate-independent terms in the conventional inversion law with the rate-dependent terms can achieve acceptable results at very slow trajectories. However, a large theoretical modeling error is inevitable at fast trajectories, which is investigated through simulations. This paper proposes a new direct approach to derive the inverse PI model directly from experimental data. As no inversion calculation is involved, the proposed direct approach is efficient and the theoretical modeling error can be avoided. In order to validate the accuracy of the direct approach, a number of experiments have been implemented on a piezo-driven compliant mechanism by utilizing the inverse PI model as a feedforward controller. The tracking performance of the mechanism is significantly improved by the direct approach.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2012.2194301</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compliant mechanism ; Control systems ; Control theory ; Feedforward ; Feedforward neural networks ; Hysteresis ; hysteresis reduction ; Inverse ; inverse modeling ; Inversions ; Mathematical model ; Mechanical engineering ; Piezoelectric actuators ; Polyimide resins ; Polynomials ; Prandtl-Ishlinskii (PI) ; rate-dependent ; Trajectory ; Vectors</subject><ispartof>IEEE/ASME transactions on mechatronics, 2013-06, Vol.18 (3), p.981-989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8274389c91be2148615b4c43979f1adbc14b7fb21d84825d2af6164d75c096223</citedby><cites>FETCH-LOGICAL-c443t-8274389c91be2148615b4c43979f1adbc14b7fb21d84825d2af6164d75c096223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6196228$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6196228$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yanding Qin</creatorcontrib><creatorcontrib>Yanling Tian</creatorcontrib><creatorcontrib>Dawei Zhang</creatorcontrib><creatorcontrib>Shirinzadeh, B.</creatorcontrib><creatorcontrib>Fatikow, S.</creatorcontrib><title>A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of piezoelectric actuators. However, for the rate-dependent PI model, the applicable valid inversion methodology is not yet available. Although simply replacing all the rate-independent terms in the conventional inversion law with the rate-dependent terms can achieve acceptable results at very slow trajectories. However, a large theoretical modeling error is inevitable at fast trajectories, which is investigated through simulations. This paper proposes a new direct approach to derive the inverse PI model directly from experimental data. As no inversion calculation is involved, the proposed direct approach is efficient and the theoretical modeling error can be avoided. In order to validate the accuracy of the direct approach, a number of experiments have been implemented on a piezo-driven compliant mechanism by utilizing the inverse PI model as a feedforward controller. The tracking performance of the mechanism is significantly improved by the direct approach.</description><subject>Compliant mechanism</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Feedforward</subject><subject>Feedforward neural networks</subject><subject>Hysteresis</subject><subject>hysteresis reduction</subject><subject>Inverse</subject><subject>inverse modeling</subject><subject>Inversions</subject><subject>Mathematical model</subject><subject>Mechanical engineering</subject><subject>Piezoelectric actuators</subject><subject>Polyimide resins</subject><subject>Polynomials</subject><subject>Prandtl-Ishlinskii (PI)</subject><subject>rate-dependent</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtPwzAQhCMEEs8_ABdLXLikeG0nTo5VKRSJAgeQuFmOswFXaVzstAh-Pe5DHDjtHOYbzWqS5BzoAICW1y_T8WgyYBTYgEEpOIW95CgKSCmIt_2oacFTIXh2mByHMKOUCqBwlPwMyaNbYUturEfTk_tuhT4gmboaW9u9k-Fi4Z02H6Rxnky-Q48egw1k5OYL7ILureuIa8izxR-Hbczw1pCh6Ze6j4TtyC1iHeEv7et1WmvNBgqnyUGj24Bnu3uSvN6OX0aT9OHp7n40fEhN7NunBZOCF6UpoUIGosghq4QRvJRlA7quDIhKNhWDuhAFy2qmmxxyUcvM0DJnjJ8kV9vc-MjnEkOv5jYYbFvdoVsGBRyyXEpZQLRe_rPO3NJ3sZ0CJhnNZFby6GJbl_EuBI-NWng71_5bAVXrOdRmDrWeQ-3miNDFFrKI-AfksK5Y8F9qWoaZ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Yanding Qin</creator><creator>Yanling Tian</creator><creator>Dawei Zhang</creator><creator>Shirinzadeh, B.</creator><creator>Fatikow, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20130601</creationdate><title>A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications</title><author>Yanding Qin ; Yanling Tian ; Dawei Zhang ; Shirinzadeh, B. ; Fatikow, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8274389c91be2148615b4c43979f1adbc14b7fb21d84825d2af6164d75c096223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Compliant mechanism</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Feedforward</topic><topic>Feedforward neural networks</topic><topic>Hysteresis</topic><topic>hysteresis reduction</topic><topic>Inverse</topic><topic>inverse modeling</topic><topic>Inversions</topic><topic>Mathematical model</topic><topic>Mechanical engineering</topic><topic>Piezoelectric actuators</topic><topic>Polyimide resins</topic><topic>Polynomials</topic><topic>Prandtl-Ishlinskii (PI)</topic><topic>rate-dependent</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanding Qin</creatorcontrib><creatorcontrib>Yanling Tian</creatorcontrib><creatorcontrib>Dawei Zhang</creatorcontrib><creatorcontrib>Shirinzadeh, B.</creatorcontrib><creatorcontrib>Fatikow, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yanding Qin</au><au>Yanling Tian</au><au>Dawei Zhang</au><au>Shirinzadeh, B.</au><au>Fatikow, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>18</volume><issue>3</issue><spage>981</spage><epage>989</epage><pages>981-989</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The Prandtl-Ishlinskii (PI) model is widely utilized in hysteresis modeling and compensation of piezoelectric actuators. For systems with rate-independent hysteresis, the inverse PI model is analytically feasible and it can be adopted as a feedforward compensator for the hysteretic nonlinearity of piezoelectric actuators. However, for the rate-dependent PI model, the applicable valid inversion methodology is not yet available. Although simply replacing all the rate-independent terms in the conventional inversion law with the rate-dependent terms can achieve acceptable results at very slow trajectories. However, a large theoretical modeling error is inevitable at fast trajectories, which is investigated through simulations. This paper proposes a new direct approach to derive the inverse PI model directly from experimental data. As no inversion calculation is involved, the proposed direct approach is efficient and the theoretical modeling error can be avoided. In order to validate the accuracy of the direct approach, a number of experiments have been implemented on a piezo-driven compliant mechanism by utilizing the inverse PI model as a feedforward controller. The tracking performance of the mechanism is significantly improved by the direct approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2012.2194301</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2013-06, Vol.18 (3), p.981-989
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_miscellaneous_1315677781
source IEEE Electronic Library (IEL)
subjects Compliant mechanism
Control systems
Control theory
Feedforward
Feedforward neural networks
Hysteresis
hysteresis reduction
Inverse
inverse modeling
Inversions
Mathematical model
Mechanical engineering
Piezoelectric actuators
Polyimide resins
Polynomials
Prandtl-Ishlinskii (PI)
rate-dependent
Trajectory
Vectors
title A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Direct%20Inverse%20Modeling%20Approach%20for%20Hysteresis%20Compensation%20of%20Piezoelectric%20Actuator%20in%20Feedforward%20Applications&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Yanding%20Qin&rft.date=2013-06-01&rft.volume=18&rft.issue=3&rft.spage=981&rft.epage=989&rft.pages=981-989&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2012.2194301&rft_dat=%3Cproquest_RIE%3E2872066781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272057593&rft_id=info:pmid/&rft_ieee_id=6196228&rfr_iscdi=true