Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs
This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2013-02, Vol.49 (2), p.526-533 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 533 |
---|---|
container_issue | 2 |
container_start_page | 526 |
container_title | Automatica (Oxford) |
container_volume | 49 |
creator | Alizadeh Moghadam, Amir Aksikas, Ilyasse Dubljevic, Stevan Forbes, J. Fraser |
description | This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (ORE). In order to solve the optimal control problem, the ORE is converted to a set of matrix Riccati equations. The feedback operator is found by solving the resulting matrix Riccati equations. The performance of the designed control policy is assessed by applying it to a system of interconnected continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR) through a numerical simulation. |
doi_str_mv | 10.1016/j.automatica.2012.11.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315670313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109812005523</els_id><sourcerecordid>1315670313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-48111565078193be6e3e318f5b3365ef9c94394103b25846327b10d613a9b7b53</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI_-IJUDgne2EmcY1vKQ6pUkOBsOY4jXLlxsBOk_j2uWsGR0-5qZnZ2ByEMJAUCxf02lePgdnIwSqYZgSwFSCNwhibAS5pknBbnaEIIyRMgFb9EVyFs48iAZxM0X7ixa6TfY9cPZictnq3f7rBy3eCdxa6N7dhb3eDPfa997axR-PVhFbDsGryJzTW6aKUN-uZUp-jjcfW-fE7Wm6eX5XydKMbKIWEcAPIiJyWHita60FRT4G1eU1rkuq1UxWjFgNA6yzkraFbWQJoCqKzqss7pFM2Oe3vvvkYdBrEzQWlrZafdGATQuL4kFGik8iNVeReC163offzN7wUQcUhNbMVfauKQmgAQEYjS25OLDEra1stOmfCrzwoOnLHDNYsjT8eXv432IiijO6Ub47UaROPM_2Y_kZCEoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315670313</pqid></control><display><type>article</type><title>Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Alizadeh Moghadam, Amir ; Aksikas, Ilyasse ; Dubljevic, Stevan ; Forbes, J. Fraser</creator><creatorcontrib>Alizadeh Moghadam, Amir ; Aksikas, Ilyasse ; Dubljevic, Stevan ; Forbes, J. Fraser</creatorcontrib><description>This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (ORE). In order to solve the optimal control problem, the ORE is converted to a set of matrix Riccati equations. The feedback operator is found by solving the resulting matrix Riccati equations. The performance of the designed control policy is assessed by applying it to a system of interconnected continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR) through a numerical simulation.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2012.11.016</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boundaries ; Boundary control system ; Chemical engineering ; Composite distributed and lumped parameter system (DPS–LPS) ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; CSTR–PFR in series ; Exact sciences and technology ; Hyperbolic PDEs ; Infinite-dimensional system ; LQ control ; Metrology, automation ; Modelling and identification ; Operators ; Optimal control ; Partial differential equations ; Policies ; Reactors ; Riccati equation ; Tanks</subject><ispartof>Automatica (Oxford), 2013-02, Vol.49 (2), p.526-533</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-48111565078193be6e3e318f5b3365ef9c94394103b25846327b10d613a9b7b53</citedby><cites>FETCH-LOGICAL-c447t-48111565078193be6e3e318f5b3365ef9c94394103b25846327b10d613a9b7b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2012.11.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26818445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alizadeh Moghadam, Amir</creatorcontrib><creatorcontrib>Aksikas, Ilyasse</creatorcontrib><creatorcontrib>Dubljevic, Stevan</creatorcontrib><creatorcontrib>Forbes, J. Fraser</creatorcontrib><title>Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs</title><title>Automatica (Oxford)</title><description>This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (ORE). In order to solve the optimal control problem, the ORE is converted to a set of matrix Riccati equations. The feedback operator is found by solving the resulting matrix Riccati equations. The performance of the designed control policy is assessed by applying it to a system of interconnected continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR) through a numerical simulation.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Boundary control system</subject><subject>Chemical engineering</subject><subject>Composite distributed and lumped parameter system (DPS–LPS)</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>CSTR–PFR in series</subject><subject>Exact sciences and technology</subject><subject>Hyperbolic PDEs</subject><subject>Infinite-dimensional system</subject><subject>LQ control</subject><subject>Metrology, automation</subject><subject>Modelling and identification</subject><subject>Operators</subject><subject>Optimal control</subject><subject>Partial differential equations</subject><subject>Policies</subject><subject>Reactors</subject><subject>Riccati equation</subject><subject>Tanks</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI_-IJUDgne2EmcY1vKQ6pUkOBsOY4jXLlxsBOk_j2uWsGR0-5qZnZ2ByEMJAUCxf02lePgdnIwSqYZgSwFSCNwhibAS5pknBbnaEIIyRMgFb9EVyFs48iAZxM0X7ixa6TfY9cPZictnq3f7rBy3eCdxa6N7dhb3eDPfa997axR-PVhFbDsGryJzTW6aKUN-uZUp-jjcfW-fE7Wm6eX5XydKMbKIWEcAPIiJyWHita60FRT4G1eU1rkuq1UxWjFgNA6yzkraFbWQJoCqKzqss7pFM2Oe3vvvkYdBrEzQWlrZafdGATQuL4kFGik8iNVeReC163offzN7wUQcUhNbMVfauKQmgAQEYjS25OLDEra1stOmfCrzwoOnLHDNYsjT8eXv432IiijO6Ub47UaROPM_2Y_kZCEoQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Alizadeh Moghadam, Amir</creator><creator>Aksikas, Ilyasse</creator><creator>Dubljevic, Stevan</creator><creator>Forbes, J. Fraser</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs</title><author>Alizadeh Moghadam, Amir ; Aksikas, Ilyasse ; Dubljevic, Stevan ; Forbes, J. Fraser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-48111565078193be6e3e318f5b3365ef9c94394103b25846327b10d613a9b7b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Boundary control system</topic><topic>Chemical engineering</topic><topic>Composite distributed and lumped parameter system (DPS–LPS)</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>CSTR–PFR in series</topic><topic>Exact sciences and technology</topic><topic>Hyperbolic PDEs</topic><topic>Infinite-dimensional system</topic><topic>LQ control</topic><topic>Metrology, automation</topic><topic>Modelling and identification</topic><topic>Operators</topic><topic>Optimal control</topic><topic>Partial differential equations</topic><topic>Policies</topic><topic>Reactors</topic><topic>Riccati equation</topic><topic>Tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alizadeh Moghadam, Amir</creatorcontrib><creatorcontrib>Aksikas, Ilyasse</creatorcontrib><creatorcontrib>Dubljevic, Stevan</creatorcontrib><creatorcontrib>Forbes, J. Fraser</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alizadeh Moghadam, Amir</au><au>Aksikas, Ilyasse</au><au>Dubljevic, Stevan</au><au>Forbes, J. Fraser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs</atitle><jtitle>Automatica (Oxford)</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>49</volume><issue>2</issue><spage>526</spage><epage>533</epage><pages>526-533</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (ORE). In order to solve the optimal control problem, the ORE is converted to a set of matrix Riccati equations. The feedback operator is found by solving the resulting matrix Riccati equations. The performance of the designed control policy is assessed by applying it to a system of interconnected continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR) through a numerical simulation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2012.11.016</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2013-02, Vol.49 (2), p.526-533 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315670313 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Boundaries Boundary control system Chemical engineering Composite distributed and lumped parameter system (DPS–LPS) Computer science control theory systems Control system synthesis Control systems Control theory. Systems CSTR–PFR in series Exact sciences and technology Hyperbolic PDEs Infinite-dimensional system LQ control Metrology, automation Modelling and identification Operators Optimal control Partial differential equations Policies Reactors Riccati equation Tanks |
title | Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20optimal%20(LQ)%20control%20of%20coupled%20hyperbolic%20PDEs%20and%20ODEs&rft.jtitle=Automatica%20(Oxford)&rft.au=Alizadeh%20Moghadam,%20Amir&rft.date=2013-02-01&rft.volume=49&rft.issue=2&rft.spage=526&rft.epage=533&rft.pages=526-533&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2012.11.016&rft_dat=%3Cproquest_cross%3E1315670313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315670313&rft_id=info:pmid/&rft_els_id=S0005109812005523&rfr_iscdi=true |