Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs

This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2013-02, Vol.49 (2), p.526-533
Hauptverfasser: Alizadeh Moghadam, Amir, Aksikas, Ilyasse, Dubljevic, Stevan, Forbes, J. Fraser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 2
container_start_page 526
container_title Automatica (Oxford)
container_volume 49
creator Alizadeh Moghadam, Amir
Aksikas, Ilyasse
Dubljevic, Stevan
Forbes, J. Fraser
description This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (ORE). In order to solve the optimal control problem, the ORE is converted to a set of matrix Riccati equations. The feedback operator is found by solving the resulting matrix Riccati equations. The performance of the designed control policy is assessed by applying it to a system of interconnected continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR) through a numerical simulation.
doi_str_mv 10.1016/j.automatica.2012.11.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315670313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109812005523</els_id><sourcerecordid>1315670313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-48111565078193be6e3e318f5b3365ef9c94394103b25846327b10d613a9b7b53</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI_-IJUDgne2EmcY1vKQ6pUkOBsOY4jXLlxsBOk_j2uWsGR0-5qZnZ2ByEMJAUCxf02lePgdnIwSqYZgSwFSCNwhibAS5pknBbnaEIIyRMgFb9EVyFs48iAZxM0X7ixa6TfY9cPZictnq3f7rBy3eCdxa6N7dhb3eDPfa997axR-PVhFbDsGryJzTW6aKUN-uZUp-jjcfW-fE7Wm6eX5XydKMbKIWEcAPIiJyWHita60FRT4G1eU1rkuq1UxWjFgNA6yzkraFbWQJoCqKzqss7pFM2Oe3vvvkYdBrEzQWlrZafdGATQuL4kFGik8iNVeReC163offzN7wUQcUhNbMVfauKQmgAQEYjS25OLDEra1stOmfCrzwoOnLHDNYsjT8eXv432IiijO6Ub47UaROPM_2Y_kZCEoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315670313</pqid></control><display><type>article</type><title>Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Alizadeh Moghadam, Amir ; Aksikas, Ilyasse ; Dubljevic, Stevan ; Forbes, J. Fraser</creator><creatorcontrib>Alizadeh Moghadam, Amir ; Aksikas, Ilyasse ; Dubljevic, Stevan ; Forbes, J. Fraser</creatorcontrib><description>This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (ORE). In order to solve the optimal control problem, the ORE is converted to a set of matrix Riccati equations. The feedback operator is found by solving the resulting matrix Riccati equations. The performance of the designed control policy is assessed by applying it to a system of interconnected continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR) through a numerical simulation.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2012.11.016</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boundaries ; Boundary control system ; Chemical engineering ; Composite distributed and lumped parameter system (DPS–LPS) ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; CSTR–PFR in series ; Exact sciences and technology ; Hyperbolic PDEs ; Infinite-dimensional system ; LQ control ; Metrology, automation ; Modelling and identification ; Operators ; Optimal control ; Partial differential equations ; Policies ; Reactors ; Riccati equation ; Tanks</subject><ispartof>Automatica (Oxford), 2013-02, Vol.49 (2), p.526-533</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-48111565078193be6e3e318f5b3365ef9c94394103b25846327b10d613a9b7b53</citedby><cites>FETCH-LOGICAL-c447t-48111565078193be6e3e318f5b3365ef9c94394103b25846327b10d613a9b7b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2012.11.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26818445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alizadeh Moghadam, Amir</creatorcontrib><creatorcontrib>Aksikas, Ilyasse</creatorcontrib><creatorcontrib>Dubljevic, Stevan</creatorcontrib><creatorcontrib>Forbes, J. Fraser</creatorcontrib><title>Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs</title><title>Automatica (Oxford)</title><description>This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (ORE). In order to solve the optimal control problem, the ORE is converted to a set of matrix Riccati equations. The feedback operator is found by solving the resulting matrix Riccati equations. The performance of the designed control policy is assessed by applying it to a system of interconnected continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR) through a numerical simulation.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Boundary control system</subject><subject>Chemical engineering</subject><subject>Composite distributed and lumped parameter system (DPS–LPS)</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>CSTR–PFR in series</subject><subject>Exact sciences and technology</subject><subject>Hyperbolic PDEs</subject><subject>Infinite-dimensional system</subject><subject>LQ control</subject><subject>Metrology, automation</subject><subject>Modelling and identification</subject><subject>Operators</subject><subject>Optimal control</subject><subject>Partial differential equations</subject><subject>Policies</subject><subject>Reactors</subject><subject>Riccati equation</subject><subject>Tanks</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI_-IJUDgne2EmcY1vKQ6pUkOBsOY4jXLlxsBOk_j2uWsGR0-5qZnZ2ByEMJAUCxf02lePgdnIwSqYZgSwFSCNwhibAS5pknBbnaEIIyRMgFb9EVyFs48iAZxM0X7ixa6TfY9cPZictnq3f7rBy3eCdxa6N7dhb3eDPfa997axR-PVhFbDsGryJzTW6aKUN-uZUp-jjcfW-fE7Wm6eX5XydKMbKIWEcAPIiJyWHita60FRT4G1eU1rkuq1UxWjFgNA6yzkraFbWQJoCqKzqss7pFM2Oe3vvvkYdBrEzQWlrZafdGATQuL4kFGik8iNVeReC163offzN7wUQcUhNbMVfauKQmgAQEYjS25OLDEra1stOmfCrzwoOnLHDNYsjT8eXv432IiijO6Ub47UaROPM_2Y_kZCEoQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Alizadeh Moghadam, Amir</creator><creator>Aksikas, Ilyasse</creator><creator>Dubljevic, Stevan</creator><creator>Forbes, J. Fraser</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs</title><author>Alizadeh Moghadam, Amir ; Aksikas, Ilyasse ; Dubljevic, Stevan ; Forbes, J. Fraser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-48111565078193be6e3e318f5b3365ef9c94394103b25846327b10d613a9b7b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Boundary control system</topic><topic>Chemical engineering</topic><topic>Composite distributed and lumped parameter system (DPS–LPS)</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>CSTR–PFR in series</topic><topic>Exact sciences and technology</topic><topic>Hyperbolic PDEs</topic><topic>Infinite-dimensional system</topic><topic>LQ control</topic><topic>Metrology, automation</topic><topic>Modelling and identification</topic><topic>Operators</topic><topic>Optimal control</topic><topic>Partial differential equations</topic><topic>Policies</topic><topic>Reactors</topic><topic>Riccati equation</topic><topic>Tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alizadeh Moghadam, Amir</creatorcontrib><creatorcontrib>Aksikas, Ilyasse</creatorcontrib><creatorcontrib>Dubljevic, Stevan</creatorcontrib><creatorcontrib>Forbes, J. Fraser</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alizadeh Moghadam, Amir</au><au>Aksikas, Ilyasse</au><au>Dubljevic, Stevan</au><au>Forbes, J. Fraser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs</atitle><jtitle>Automatica (Oxford)</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>49</volume><issue>2</issue><spage>526</spage><epage>533</epage><pages>526-533</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This contribution addresses the development of a linear quadratic (LQ) regulator for a set of hyperbolic PDEs coupled with a set of ODEs through the boundary. The approach is based on an infinite-dimensional Hilbert state-space description of the system and the well-known operator Riccati equation (ORE). In order to solve the optimal control problem, the ORE is converted to a set of matrix Riccati equations. The feedback operator is found by solving the resulting matrix Riccati equations. The performance of the designed control policy is assessed by applying it to a system of interconnected continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR) through a numerical simulation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2012.11.016</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2013-02, Vol.49 (2), p.526-533
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_1315670313
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Boundaries
Boundary control system
Chemical engineering
Composite distributed and lumped parameter system (DPS–LPS)
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
CSTR–PFR in series
Exact sciences and technology
Hyperbolic PDEs
Infinite-dimensional system
LQ control
Metrology, automation
Modelling and identification
Operators
Optimal control
Partial differential equations
Policies
Reactors
Riccati equation
Tanks
title Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20optimal%20(LQ)%20control%20of%20coupled%20hyperbolic%20PDEs%20and%20ODEs&rft.jtitle=Automatica%20(Oxford)&rft.au=Alizadeh%20Moghadam,%20Amir&rft.date=2013-02-01&rft.volume=49&rft.issue=2&rft.spage=526&rft.epage=533&rft.pages=526-533&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2012.11.016&rft_dat=%3Cproquest_cross%3E1315670313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315670313&rft_id=info:pmid/&rft_els_id=S0005109812005523&rfr_iscdi=true