Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle
In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll s...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2013, Vol.69 (1-4), p.147-159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 1-4 |
container_start_page | 147 |
container_title | Journal of intelligent & robotic systems |
container_volume | 69 |
creator | Amiri, N. Ramirez-Serrano, A. Davies, R. J. |
description | In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented. |
doi_str_mv | 10.1007/s10846-012-9744-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315663178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858112051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e94c6f511ae42cfe3d9d7f764e4209c291c4439a281b398217d3ba7aeaa2b5ab3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RfO1HjrVaLRQ8aL2GbHa2bt0mNdkV7K83dT2I4GmYmecdmAehc0quKCH5daCkEBkmlGGZC4F3B2hE05xjIog8RCMiGcWEyewYnYSwJoTIIpUj9DS3Hay8bpMbbd5CB9ttY1fJ1NnOuzZxdaJtsrTG2Q-wXeNsJG973eLZ93yjrYUqmYBv4uIFXhvTwik6qnUb4OynjtFydvc8fcCLx_v5dLLAhgvZYZDCZHVKqQbBTA28klVe55mILZGGSWqE4FKzgpZcFozmFS91rkFrVqa65GN0OdzdevfeQ-jUpgkG2lZbcH1QlNM0yzjNi4he_EHXrvfxmUixLIuiorRI0YEy3oXgoVZb32y0_1SUqL1mNWhWUbPaa1a7mGFDJkTWrsD_uvxv6AuFGH_3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266573744</pqid></control><display><type>article</type><title>Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Amiri, N. ; Ramirez-Serrano, A. ; Davies, R. J.</creator><creatorcontrib>Amiri, N. ; Ramirez-Serrano, A. ; Davies, R. J.</creatorcontrib><description>In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-012-9744-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Active control ; Artificial Intelligence ; Autonomous ; Control ; Electrical Engineering ; Engineering ; Integrals ; Landing ; Mechanical Engineering ; Mechatronics ; Robotics ; Rolling motion ; Takeoff ; Unmanned aerial vehicles ; Vehicles</subject><ispartof>Journal of intelligent & robotic systems, 2013, Vol.69 (1-4), p.147-159</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e94c6f511ae42cfe3d9d7f764e4209c291c4439a281b398217d3ba7aeaa2b5ab3</citedby><cites>FETCH-LOGICAL-c349t-e94c6f511ae42cfe3d9d7f764e4209c291c4439a281b398217d3ba7aeaa2b5ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-012-9744-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-012-9744-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Amiri, N.</creatorcontrib><creatorcontrib>Ramirez-Serrano, A.</creatorcontrib><creatorcontrib>Davies, R. J.</creatorcontrib><title>Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented.</description><subject>Active control</subject><subject>Artificial Intelligence</subject><subject>Autonomous</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Integrals</subject><subject>Landing</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Rolling motion</subject><subject>Takeoff</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RfO1HjrVaLRQ8aL2GbHa2bt0mNdkV7K83dT2I4GmYmecdmAehc0quKCH5daCkEBkmlGGZC4F3B2hE05xjIog8RCMiGcWEyewYnYSwJoTIIpUj9DS3Hay8bpMbbd5CB9ttY1fJ1NnOuzZxdaJtsrTG2Q-wXeNsJG973eLZ93yjrYUqmYBv4uIFXhvTwik6qnUb4OynjtFydvc8fcCLx_v5dLLAhgvZYZDCZHVKqQbBTA28klVe55mILZGGSWqE4FKzgpZcFozmFS91rkFrVqa65GN0OdzdevfeQ-jUpgkG2lZbcH1QlNM0yzjNi4he_EHXrvfxmUixLIuiorRI0YEy3oXgoVZb32y0_1SUqL1mNWhWUbPaa1a7mGFDJkTWrsD_uvxv6AuFGH_3</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Amiri, N.</creator><creator>Ramirez-Serrano, A.</creator><creator>Davies, R. J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>2013</creationdate><title>Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle</title><author>Amiri, N. ; Ramirez-Serrano, A. ; Davies, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e94c6f511ae42cfe3d9d7f764e4209c291c4439a281b398217d3ba7aeaa2b5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active control</topic><topic>Artificial Intelligence</topic><topic>Autonomous</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Integrals</topic><topic>Landing</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Rolling motion</topic><topic>Takeoff</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amiri, N.</creatorcontrib><creatorcontrib>Ramirez-Serrano, A.</creatorcontrib><creatorcontrib>Davies, R. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri, N.</au><au>Ramirez-Serrano, A.</au><au>Davies, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2013</date><risdate>2013</risdate><volume>69</volume><issue>1-4</issue><spage>147</spage><epage>159</epage><pages>147-159</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-012-9744-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2013, Vol.69 (1-4), p.147-159 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315663178 |
source | SpringerLink Journals - AutoHoldings |
subjects | Active control Artificial Intelligence Autonomous Control Electrical Engineering Engineering Integrals Landing Mechanical Engineering Mechatronics Robotics Rolling motion Takeoff Unmanned aerial vehicles Vehicles |
title | Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20Backstepping%20Control%20of%20an%20Unconventional%20Dual-Fan%20Unmanned%20Aerial%20Vehicle&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Amiri,%20N.&rft.date=2013&rft.volume=69&rft.issue=1-4&rft.spage=147&rft.epage=159&rft.pages=147-159&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-012-9744-z&rft_dat=%3Cproquest_cross%3E2858112051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266573744&rft_id=info:pmid/&rfr_iscdi=true |