Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle

In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2013, Vol.69 (1-4), p.147-159
Hauptverfasser: Amiri, N., Ramirez-Serrano, A., Davies, R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 1-4
container_start_page 147
container_title Journal of intelligent & robotic systems
container_volume 69
creator Amiri, N.
Ramirez-Serrano, A.
Davies, R. J.
description In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented.
doi_str_mv 10.1007/s10846-012-9744-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315663178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858112051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e94c6f511ae42cfe3d9d7f764e4209c291c4439a281b398217d3ba7aeaa2b5ab3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RfO1HjrVaLRQ8aL2GbHa2bt0mNdkV7K83dT2I4GmYmecdmAehc0quKCH5daCkEBkmlGGZC4F3B2hE05xjIog8RCMiGcWEyewYnYSwJoTIIpUj9DS3Hay8bpMbbd5CB9ttY1fJ1NnOuzZxdaJtsrTG2Q-wXeNsJG973eLZ93yjrYUqmYBv4uIFXhvTwik6qnUb4OynjtFydvc8fcCLx_v5dLLAhgvZYZDCZHVKqQbBTA28klVe55mILZGGSWqE4FKzgpZcFozmFS91rkFrVqa65GN0OdzdevfeQ-jUpgkG2lZbcH1QlNM0yzjNi4he_EHXrvfxmUixLIuiorRI0YEy3oXgoVZb32y0_1SUqL1mNWhWUbPaa1a7mGFDJkTWrsD_uvxv6AuFGH_3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266573744</pqid></control><display><type>article</type><title>Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Amiri, N. ; Ramirez-Serrano, A. ; Davies, R. J.</creator><creatorcontrib>Amiri, N. ; Ramirez-Serrano, A. ; Davies, R. J.</creatorcontrib><description>In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-012-9744-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Active control ; Artificial Intelligence ; Autonomous ; Control ; Electrical Engineering ; Engineering ; Integrals ; Landing ; Mechanical Engineering ; Mechatronics ; Robotics ; Rolling motion ; Takeoff ; Unmanned aerial vehicles ; Vehicles</subject><ispartof>Journal of intelligent &amp; robotic systems, 2013, Vol.69 (1-4), p.147-159</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e94c6f511ae42cfe3d9d7f764e4209c291c4439a281b398217d3ba7aeaa2b5ab3</citedby><cites>FETCH-LOGICAL-c349t-e94c6f511ae42cfe3d9d7f764e4209c291c4439a281b398217d3ba7aeaa2b5ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-012-9744-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-012-9744-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Amiri, N.</creatorcontrib><creatorcontrib>Ramirez-Serrano, A.</creatorcontrib><creatorcontrib>Davies, R. J.</creatorcontrib><title>Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented.</description><subject>Active control</subject><subject>Artificial Intelligence</subject><subject>Autonomous</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Integrals</subject><subject>Landing</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Rolling motion</subject><subject>Takeoff</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RfO1HjrVaLRQ8aL2GbHa2bt0mNdkV7K83dT2I4GmYmecdmAehc0quKCH5daCkEBkmlGGZC4F3B2hE05xjIog8RCMiGcWEyewYnYSwJoTIIpUj9DS3Hay8bpMbbd5CB9ttY1fJ1NnOuzZxdaJtsrTG2Q-wXeNsJG973eLZ93yjrYUqmYBv4uIFXhvTwik6qnUb4OynjtFydvc8fcCLx_v5dLLAhgvZYZDCZHVKqQbBTA28klVe55mILZGGSWqE4FKzgpZcFozmFS91rkFrVqa65GN0OdzdevfeQ-jUpgkG2lZbcH1QlNM0yzjNi4he_EHXrvfxmUixLIuiorRI0YEy3oXgoVZb32y0_1SUqL1mNWhWUbPaa1a7mGFDJkTWrsD_uvxv6AuFGH_3</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Amiri, N.</creator><creator>Ramirez-Serrano, A.</creator><creator>Davies, R. J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>2013</creationdate><title>Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle</title><author>Amiri, N. ; Ramirez-Serrano, A. ; Davies, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e94c6f511ae42cfe3d9d7f764e4209c291c4439a281b398217d3ba7aeaa2b5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active control</topic><topic>Artificial Intelligence</topic><topic>Autonomous</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Integrals</topic><topic>Landing</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Rolling motion</topic><topic>Takeoff</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amiri, N.</creatorcontrib><creatorcontrib>Ramirez-Serrano, A.</creatorcontrib><creatorcontrib>Davies, R. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri, N.</au><au>Ramirez-Serrano, A.</au><au>Davies, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2013</date><risdate>2013</risdate><volume>69</volume><issue>1-4</issue><spage>147</spage><epage>159</epage><pages>147-159</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-012-9744-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2013, Vol.69 (1-4), p.147-159
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_miscellaneous_1315663178
source SpringerLink Journals - AutoHoldings
subjects Active control
Artificial Intelligence
Autonomous
Control
Electrical Engineering
Engineering
Integrals
Landing
Mechanical Engineering
Mechatronics
Robotics
Rolling motion
Takeoff
Unmanned aerial vehicles
Vehicles
title Integral Backstepping Control of an Unconventional Dual-Fan Unmanned Aerial Vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20Backstepping%20Control%20of%20an%20Unconventional%20Dual-Fan%20Unmanned%20Aerial%20Vehicle&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Amiri,%20N.&rft.date=2013&rft.volume=69&rft.issue=1-4&rft.spage=147&rft.epage=159&rft.pages=147-159&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-012-9744-z&rft_dat=%3Cproquest_cross%3E2858112051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266573744&rft_id=info:pmid/&rfr_iscdi=true