Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution

Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2012-09, Vol.61 (3), p.809-821
Hauptverfasser: Balakrishnan, N., Man Ho Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 821
container_issue 3
container_start_page 809
container_title IEEE transactions on reliability
container_volume 61
creator Balakrishnan, N.
Man Ho Ling
description Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result in reducing the experimental time as well as the cost of the experiment. Here, we present an expectation-maximization (EM) algorithm for developing inference on the reliability at a specific time, as well as the mean lifetime of the device based on one-shot device testing data under the exponential distribution when there are multiple stress factors. We use the log-linear link function for this purpose. Unlike in the typical EM algorithm, it is not necessary to obtain maximum likelihood estimates (MLEs) of the parameters at each step of the iteration. By using the one-step Newton-Raphson method, we observe that the convergence occurs quickly. We also use the jackknife technique to reduce the bias of the estimate obtained from the EM algorithm. In addition, we discuss the construction of confidence intervals for some reliability characteristics by using the asymptotic properties of the MLEs based on the observed Fisher information matrix, as well as by the jackknife technique, the parametric bootstrap methods, and a transformation technique. Finally, we present an example to illustrate all the inferential methods developed here.
doi_str_mv 10.1109/TR.2012.2208301
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315651045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248195</ieee_id><sourcerecordid>2751916371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a0eec7228c97234b7b0bb345cf3a0336c369435e43482ae03ce2ba5b973d61ec3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbPHrwsePGSdj-T7FHa-gEthZqew2Y70S1ptu5uRP-9KS0ePA0zPO_w8iB0S8mIUqLGxWrECGUjxkjOCT1DAyplntCM0XM0IITmiZJMXaKrELb9KoTKB2i96Jpo9w0kb9FDCHjhNtDg2nm8bPvjh4t4Cl_WAC4gRNu-46mOGq_bDXg8-967FtpodYOnNkRvqy5a116ji1o3AW5Oc4jWT7Ni8pLMl8-vk8d5YjhjMdEEwGSM5UZljIsqq0hVcSFNzTXhPDU8VYJLEFzkTAPhBlilZaUyvkkpGD5ED8e_e-8-u75fubPBQNPoFlwXSsqpTCUlQvbo_T906zrf9u1KSniWp6liaU-Nj5TxLgQPdbn3dqf9Tw-VB81lsSoPmsuT5j5xd0xYAPijUyZyqiT_Bd5od20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037866926</pqid></control><display><type>article</type><title>Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Balakrishnan, N. ; Man Ho Ling</creator><creatorcontrib>Balakrishnan, N. ; Man Ho Ling</creatorcontrib><description>Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result in reducing the experimental time as well as the cost of the experiment. Here, we present an expectation-maximization (EM) algorithm for developing inference on the reliability at a specific time, as well as the mean lifetime of the device based on one-shot device testing data under the exponential distribution when there are multiple stress factors. We use the log-linear link function for this purpose. Unlike in the typical EM algorithm, it is not necessary to obtain maximum likelihood estimates (MLEs) of the parameters at each step of the iteration. By using the one-step Newton-Raphson method, we observe that the convergence occurs quickly. We also use the jackknife technique to reduce the bias of the estimate obtained from the EM algorithm. In addition, we discuss the construction of confidence intervals for some reliability characteristics by using the asymptotic properties of the MLEs based on the observed Fisher information matrix, as well as by the jackknife technique, the parametric bootstrap methods, and a transformation technique. Finally, we present an example to illustrate all the inferential methods developed here.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2012.2208301</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic method ; binary data ; Confidence intervals ; Cost engineering ; Data models ; Devices ; Estimates ; expectation-maximization algorithm ; exponential distribution ; Inference ; jackknife ; least-squares method ; Mathematical models ; Maximum likelihood estimation ; multiple-stress model ; Newton method ; one-shot device ; parametric bootstrap ; point estimation ; Reliability ; Stress ; Stresses ; Studies ; Testing ; Transformations</subject><ispartof>IEEE transactions on reliability, 2012-09, Vol.61 (3), p.809-821</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a0eec7228c97234b7b0bb345cf3a0336c369435e43482ae03ce2ba5b973d61ec3</citedby><cites>FETCH-LOGICAL-c322t-a0eec7228c97234b7b0bb345cf3a0336c369435e43482ae03ce2ba5b973d61ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248195$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Balakrishnan, N.</creatorcontrib><creatorcontrib>Man Ho Ling</creatorcontrib><title>Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result in reducing the experimental time as well as the cost of the experiment. Here, we present an expectation-maximization (EM) algorithm for developing inference on the reliability at a specific time, as well as the mean lifetime of the device based on one-shot device testing data under the exponential distribution when there are multiple stress factors. We use the log-linear link function for this purpose. Unlike in the typical EM algorithm, it is not necessary to obtain maximum likelihood estimates (MLEs) of the parameters at each step of the iteration. By using the one-step Newton-Raphson method, we observe that the convergence occurs quickly. We also use the jackknife technique to reduce the bias of the estimate obtained from the EM algorithm. In addition, we discuss the construction of confidence intervals for some reliability characteristics by using the asymptotic properties of the MLEs based on the observed Fisher information matrix, as well as by the jackknife technique, the parametric bootstrap methods, and a transformation technique. Finally, we present an example to illustrate all the inferential methods developed here.</description><subject>Algorithms</subject><subject>Asymptotic method</subject><subject>binary data</subject><subject>Confidence intervals</subject><subject>Cost engineering</subject><subject>Data models</subject><subject>Devices</subject><subject>Estimates</subject><subject>expectation-maximization algorithm</subject><subject>exponential distribution</subject><subject>Inference</subject><subject>jackknife</subject><subject>least-squares method</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>multiple-stress model</subject><subject>Newton method</subject><subject>one-shot device</subject><subject>parametric bootstrap</subject><subject>point estimation</subject><subject>Reliability</subject><subject>Stress</subject><subject>Stresses</subject><subject>Studies</subject><subject>Testing</subject><subject>Transformations</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbPHrwsePGSdj-T7FHa-gEthZqew2Y70S1ptu5uRP-9KS0ePA0zPO_w8iB0S8mIUqLGxWrECGUjxkjOCT1DAyplntCM0XM0IITmiZJMXaKrELb9KoTKB2i96Jpo9w0kb9FDCHjhNtDg2nm8bPvjh4t4Cl_WAC4gRNu-46mOGq_bDXg8-967FtpodYOnNkRvqy5a116ji1o3AW5Oc4jWT7Ni8pLMl8-vk8d5YjhjMdEEwGSM5UZljIsqq0hVcSFNzTXhPDU8VYJLEFzkTAPhBlilZaUyvkkpGD5ED8e_e-8-u75fubPBQNPoFlwXSsqpTCUlQvbo_T906zrf9u1KSniWp6liaU-Nj5TxLgQPdbn3dqf9Tw-VB81lsSoPmsuT5j5xd0xYAPijUyZyqiT_Bd5od20</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Balakrishnan, N.</creator><creator>Man Ho Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution</title><author>Balakrishnan, N. ; Man Ho Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a0eec7228c97234b7b0bb345cf3a0336c369435e43482ae03ce2ba5b973d61ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Asymptotic method</topic><topic>binary data</topic><topic>Confidence intervals</topic><topic>Cost engineering</topic><topic>Data models</topic><topic>Devices</topic><topic>Estimates</topic><topic>expectation-maximization algorithm</topic><topic>exponential distribution</topic><topic>Inference</topic><topic>jackknife</topic><topic>least-squares method</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>multiple-stress model</topic><topic>Newton method</topic><topic>one-shot device</topic><topic>parametric bootstrap</topic><topic>point estimation</topic><topic>Reliability</topic><topic>Stress</topic><topic>Stresses</topic><topic>Studies</topic><topic>Testing</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, N.</creatorcontrib><creatorcontrib>Man Ho Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Balakrishnan, N.</au><au>Man Ho Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>61</volume><issue>3</issue><spage>809</spage><epage>821</epage><pages>809-821</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result in reducing the experimental time as well as the cost of the experiment. Here, we present an expectation-maximization (EM) algorithm for developing inference on the reliability at a specific time, as well as the mean lifetime of the device based on one-shot device testing data under the exponential distribution when there are multiple stress factors. We use the log-linear link function for this purpose. Unlike in the typical EM algorithm, it is not necessary to obtain maximum likelihood estimates (MLEs) of the parameters at each step of the iteration. By using the one-step Newton-Raphson method, we observe that the convergence occurs quickly. We also use the jackknife technique to reduce the bias of the estimate obtained from the EM algorithm. In addition, we discuss the construction of confidence intervals for some reliability characteristics by using the asymptotic properties of the MLEs based on the observed Fisher information matrix, as well as by the jackknife technique, the parametric bootstrap methods, and a transformation technique. Finally, we present an example to illustrate all the inferential methods developed here.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2012.2208301</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2012-09, Vol.61 (3), p.809-821
issn 0018-9529
1558-1721
language eng
recordid cdi_proquest_miscellaneous_1315651045
source IEEE Electronic Library (IEL)
subjects Algorithms
Asymptotic method
binary data
Confidence intervals
Cost engineering
Data models
Devices
Estimates
expectation-maximization algorithm
exponential distribution
Inference
jackknife
least-squares method
Mathematical models
Maximum likelihood estimation
multiple-stress model
Newton method
one-shot device
parametric bootstrap
point estimation
Reliability
Stress
Stresses
Studies
Testing
Transformations
title Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Stress%20Model%20for%20One-Shot%20Device%20Testing%20Data%20Under%20Exponential%20Distribution&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Balakrishnan,%20N.&rft.date=2012-09-01&rft.volume=61&rft.issue=3&rft.spage=809&rft.epage=821&rft.pages=809-821&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2012.2208301&rft_dat=%3Cproquest_RIE%3E2751916371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037866926&rft_id=info:pmid/&rft_ieee_id=6248195&rfr_iscdi=true