Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution
Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2012-09, Vol.61 (3), p.809-821 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 821 |
---|---|
container_issue | 3 |
container_start_page | 809 |
container_title | IEEE transactions on reliability |
container_volume | 61 |
creator | Balakrishnan, N. Man Ho Ling |
description | Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result in reducing the experimental time as well as the cost of the experiment. Here, we present an expectation-maximization (EM) algorithm for developing inference on the reliability at a specific time, as well as the mean lifetime of the device based on one-shot device testing data under the exponential distribution when there are multiple stress factors. We use the log-linear link function for this purpose. Unlike in the typical EM algorithm, it is not necessary to obtain maximum likelihood estimates (MLEs) of the parameters at each step of the iteration. By using the one-step Newton-Raphson method, we observe that the convergence occurs quickly. We also use the jackknife technique to reduce the bias of the estimate obtained from the EM algorithm. In addition, we discuss the construction of confidence intervals for some reliability characteristics by using the asymptotic properties of the MLEs based on the observed Fisher information matrix, as well as by the jackknife technique, the parametric bootstrap methods, and a transformation technique. Finally, we present an example to illustrate all the inferential methods developed here. |
doi_str_mv | 10.1109/TR.2012.2208301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315651045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248195</ieee_id><sourcerecordid>2751916371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a0eec7228c97234b7b0bb345cf3a0336c369435e43482ae03ce2ba5b973d61ec3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbPHrwsePGSdj-T7FHa-gEthZqew2Y70S1ptu5uRP-9KS0ePA0zPO_w8iB0S8mIUqLGxWrECGUjxkjOCT1DAyplntCM0XM0IITmiZJMXaKrELb9KoTKB2i96Jpo9w0kb9FDCHjhNtDg2nm8bPvjh4t4Cl_WAC4gRNu-46mOGq_bDXg8-967FtpodYOnNkRvqy5a116ji1o3AW5Oc4jWT7Ni8pLMl8-vk8d5YjhjMdEEwGSM5UZljIsqq0hVcSFNzTXhPDU8VYJLEFzkTAPhBlilZaUyvkkpGD5ED8e_e-8-u75fubPBQNPoFlwXSsqpTCUlQvbo_T906zrf9u1KSniWp6liaU-Nj5TxLgQPdbn3dqf9Tw-VB81lsSoPmsuT5j5xd0xYAPijUyZyqiT_Bd5od20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037866926</pqid></control><display><type>article</type><title>Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Balakrishnan, N. ; Man Ho Ling</creator><creatorcontrib>Balakrishnan, N. ; Man Ho Ling</creatorcontrib><description>Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result in reducing the experimental time as well as the cost of the experiment. Here, we present an expectation-maximization (EM) algorithm for developing inference on the reliability at a specific time, as well as the mean lifetime of the device based on one-shot device testing data under the exponential distribution when there are multiple stress factors. We use the log-linear link function for this purpose. Unlike in the typical EM algorithm, it is not necessary to obtain maximum likelihood estimates (MLEs) of the parameters at each step of the iteration. By using the one-step Newton-Raphson method, we observe that the convergence occurs quickly. We also use the jackknife technique to reduce the bias of the estimate obtained from the EM algorithm. In addition, we discuss the construction of confidence intervals for some reliability characteristics by using the asymptotic properties of the MLEs based on the observed Fisher information matrix, as well as by the jackknife technique, the parametric bootstrap methods, and a transformation technique. Finally, we present an example to illustrate all the inferential methods developed here.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2012.2208301</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic method ; binary data ; Confidence intervals ; Cost engineering ; Data models ; Devices ; Estimates ; expectation-maximization algorithm ; exponential distribution ; Inference ; jackknife ; least-squares method ; Mathematical models ; Maximum likelihood estimation ; multiple-stress model ; Newton method ; one-shot device ; parametric bootstrap ; point estimation ; Reliability ; Stress ; Stresses ; Studies ; Testing ; Transformations</subject><ispartof>IEEE transactions on reliability, 2012-09, Vol.61 (3), p.809-821</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a0eec7228c97234b7b0bb345cf3a0336c369435e43482ae03ce2ba5b973d61ec3</citedby><cites>FETCH-LOGICAL-c322t-a0eec7228c97234b7b0bb345cf3a0336c369435e43482ae03ce2ba5b973d61ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248195$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Balakrishnan, N.</creatorcontrib><creatorcontrib>Man Ho Ling</creatorcontrib><title>Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result in reducing the experimental time as well as the cost of the experiment. Here, we present an expectation-maximization (EM) algorithm for developing inference on the reliability at a specific time, as well as the mean lifetime of the device based on one-shot device testing data under the exponential distribution when there are multiple stress factors. We use the log-linear link function for this purpose. Unlike in the typical EM algorithm, it is not necessary to obtain maximum likelihood estimates (MLEs) of the parameters at each step of the iteration. By using the one-step Newton-Raphson method, we observe that the convergence occurs quickly. We also use the jackknife technique to reduce the bias of the estimate obtained from the EM algorithm. In addition, we discuss the construction of confidence intervals for some reliability characteristics by using the asymptotic properties of the MLEs based on the observed Fisher information matrix, as well as by the jackknife technique, the parametric bootstrap methods, and a transformation technique. Finally, we present an example to illustrate all the inferential methods developed here.</description><subject>Algorithms</subject><subject>Asymptotic method</subject><subject>binary data</subject><subject>Confidence intervals</subject><subject>Cost engineering</subject><subject>Data models</subject><subject>Devices</subject><subject>Estimates</subject><subject>expectation-maximization algorithm</subject><subject>exponential distribution</subject><subject>Inference</subject><subject>jackknife</subject><subject>least-squares method</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>multiple-stress model</subject><subject>Newton method</subject><subject>one-shot device</subject><subject>parametric bootstrap</subject><subject>point estimation</subject><subject>Reliability</subject><subject>Stress</subject><subject>Stresses</subject><subject>Studies</subject><subject>Testing</subject><subject>Transformations</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbPHrwsePGSdj-T7FHa-gEthZqew2Y70S1ptu5uRP-9KS0ePA0zPO_w8iB0S8mIUqLGxWrECGUjxkjOCT1DAyplntCM0XM0IITmiZJMXaKrELb9KoTKB2i96Jpo9w0kb9FDCHjhNtDg2nm8bPvjh4t4Cl_WAC4gRNu-46mOGq_bDXg8-967FtpodYOnNkRvqy5a116ji1o3AW5Oc4jWT7Ni8pLMl8-vk8d5YjhjMdEEwGSM5UZljIsqq0hVcSFNzTXhPDU8VYJLEFzkTAPhBlilZaUyvkkpGD5ED8e_e-8-u75fubPBQNPoFlwXSsqpTCUlQvbo_T906zrf9u1KSniWp6liaU-Nj5TxLgQPdbn3dqf9Tw-VB81lsSoPmsuT5j5xd0xYAPijUyZyqiT_Bd5od20</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Balakrishnan, N.</creator><creator>Man Ho Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution</title><author>Balakrishnan, N. ; Man Ho Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a0eec7228c97234b7b0bb345cf3a0336c369435e43482ae03ce2ba5b973d61ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Asymptotic method</topic><topic>binary data</topic><topic>Confidence intervals</topic><topic>Cost engineering</topic><topic>Data models</topic><topic>Devices</topic><topic>Estimates</topic><topic>expectation-maximization algorithm</topic><topic>exponential distribution</topic><topic>Inference</topic><topic>jackknife</topic><topic>least-squares method</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>multiple-stress model</topic><topic>Newton method</topic><topic>one-shot device</topic><topic>parametric bootstrap</topic><topic>point estimation</topic><topic>Reliability</topic><topic>Stress</topic><topic>Stresses</topic><topic>Studies</topic><topic>Testing</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, N.</creatorcontrib><creatorcontrib>Man Ho Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Balakrishnan, N.</au><au>Man Ho Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>61</volume><issue>3</issue><spage>809</spage><epage>821</epage><pages>809-821</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Left- and right-censored life time data arise naturally in one-shot device testing. An experimenter is often interested in identifying the effects of several stress variables on the lifetime of a device, and furthermore multiple-stress experiments controlling simultaneously several variables, result in reducing the experimental time as well as the cost of the experiment. Here, we present an expectation-maximization (EM) algorithm for developing inference on the reliability at a specific time, as well as the mean lifetime of the device based on one-shot device testing data under the exponential distribution when there are multiple stress factors. We use the log-linear link function for this purpose. Unlike in the typical EM algorithm, it is not necessary to obtain maximum likelihood estimates (MLEs) of the parameters at each step of the iteration. By using the one-step Newton-Raphson method, we observe that the convergence occurs quickly. We also use the jackknife technique to reduce the bias of the estimate obtained from the EM algorithm. In addition, we discuss the construction of confidence intervals for some reliability characteristics by using the asymptotic properties of the MLEs based on the observed Fisher information matrix, as well as by the jackknife technique, the parametric bootstrap methods, and a transformation technique. Finally, we present an example to illustrate all the inferential methods developed here.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2012.2208301</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2012-09, Vol.61 (3), p.809-821 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315651045 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Asymptotic method binary data Confidence intervals Cost engineering Data models Devices Estimates expectation-maximization algorithm exponential distribution Inference jackknife least-squares method Mathematical models Maximum likelihood estimation multiple-stress model Newton method one-shot device parametric bootstrap point estimation Reliability Stress Stresses Studies Testing Transformations |
title | Multiple-Stress Model for One-Shot Device Testing Data Under Exponential Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Stress%20Model%20for%20One-Shot%20Device%20Testing%20Data%20Under%20Exponential%20Distribution&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Balakrishnan,%20N.&rft.date=2012-09-01&rft.volume=61&rft.issue=3&rft.spage=809&rft.epage=821&rft.pages=809-821&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2012.2208301&rft_dat=%3Cproquest_RIE%3E2751916371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037866926&rft_id=info:pmid/&rft_ieee_id=6248195&rfr_iscdi=true |