Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation

Accurate and precise displacement estimation has been a hallmark of clinical ultrasound. Displacement estimation accuracy has largely been considered to be limited by the Cramer-Rao lower bound (CRLB). However, the CRLB only describes the minimum variance obtainable from unbiased estimators. Unbiase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2013-01, Vol.60 (1), p.132-143
Hauptverfasser: Byram, B., Trahey, G. E., Palmeri, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 132
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 60
creator Byram, B.
Trahey, G. E.
Palmeri, M.
description Accurate and precise displacement estimation has been a hallmark of clinical ultrasound. Displacement estimation accuracy has largely been considered to be limited by the Cramer-Rao lower bound (CRLB). However, the CRLB only describes the minimum variance obtainable from unbiased estimators. Unbiased estimators are generally implemented using Bayes' theorem, which requires a likelihood function. The classic likelihood function for the displacement estimation problem is not discriminative and is difficult to implement for clinically relevant ultrasound with diffuse scattering. Because the classic likelihood function is not effective, a perturbation is proposed. The proposed likelihood function was evaluated and compared against the classic likelihood function by converting both to posterior probability density functions (PDFs) using a noninformative prior. Example results are reported for bulk motion simulations using a 6λ tracking kernel and 30 dB SNR for 1000 data realizations. The canonical likelihood function assigned the true displacement a mean probability of only 0.070 ± 0.020, whereas the new likelihood function assigned the true displacement a much higher probability of 0.22 ± 0.16. The new likelihood function shows improvements at least for bulk motion, acoustic radiation force induced motion, and compressive motion, and at least for SNRs greater than 10 dB and kernel lengths between 1.5 and 12λ.
doi_str_mv 10.1109/TUFFC.2013.2545
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315648903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6396494</ieee_id><sourcerecordid>2858072921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-8f8a926c669b95ecb91564204e3eff899e1dab47e3feacc8bd8afc42ac3b8f523</originalsourceid><addsrcrecordid>eNqNkr9v1DAYhiMEokdhZkBCllhYcvXv2AyV4MRBpUowtLPlOF967uXiYCdIXfuX15crJ2CBycP7-NH3fXqL4jXBS0KwPru6Xq9XS4oJW1LBxZNiQQQVpdJCPC0WWClRMkzwSfEipVuMCeeaPi9OKKOq0hQvivtP9g6Stz1KA7htB2iM1m19f7NE320c0cUHlEO_GzrYQT_aOiMDxHGKtR196NEY0LgB1PktdH4TQoPaqXdz1IaIpi4LU5j6BjU-DZ11swdBGv1uNrwsnrW2S_Dq8T0trtefr1Zfy8tvXy5WHy9LJyo2lqpVVlPppNS1FuBqTYTkFHNg0LZKayCNrXkFrAXrnKobZVvHqXWsVq2g7LQ4P3iHqd5B4_IU0XZmiHmOeGeC9ebPpPcbcxN-GiZ4JYXOgvePghh-THkBs_PJQdfZHsKUDGF5IkHzif8P5Upj9m-UVoziiszWd3-ht2GKfT5apqQUstJYZursQLkYUorQHlck2OxbY-bWmH1rzL41-cfb3y9z5H_VJANvDoAHgGMsmZZcc_YAqeTJtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266567906</pqid></control><display><type>article</type><title>Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Byram, B. ; Trahey, G. E. ; Palmeri, M.</creator><creatorcontrib>Byram, B. ; Trahey, G. E. ; Palmeri, M.</creatorcontrib><description>Accurate and precise displacement estimation has been a hallmark of clinical ultrasound. Displacement estimation accuracy has largely been considered to be limited by the Cramer-Rao lower bound (CRLB). However, the CRLB only describes the minimum variance obtainable from unbiased estimators. Unbiased estimators are generally implemented using Bayes' theorem, which requires a likelihood function. The classic likelihood function for the displacement estimation problem is not discriminative and is difficult to implement for clinically relevant ultrasound with diffuse scattering. Because the classic likelihood function is not effective, a perturbation is proposed. The proposed likelihood function was evaluated and compared against the classic likelihood function by converting both to posterior probability density functions (PDFs) using a noninformative prior. Example results are reported for bulk motion simulations using a 6λ tracking kernel and 30 dB SNR for 1000 data realizations. The canonical likelihood function assigned the true displacement a mean probability of only 0.070 ± 0.020, whereas the new likelihood function assigned the true displacement a much higher probability of 0.22 ± 0.16. The new likelihood function shows improvements at least for bulk motion, acoustic radiation force induced motion, and compressive motion, and at least for SNRs greater than 10 dB and kernel lengths between 1.5 and 12λ.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2013.2545</identifier><identifier>PMID: 23287920</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Algorithms ; Bayes Theorem ; Bayesian analysis ; Estimation ; Force ; Kernel ; Likelihood Functions ; Measurement ; Models, Theoretical ; Monte Carlo simulation ; Noise ; Scattering, Radiation ; Signal-To-Noise Ratio ; Statistical methods ; Studies ; Ultrasonic imaging ; Ultrasonics ; Ultrasonography - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-01, Vol.60 (1), p.132-143</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-8f8a926c669b95ecb91564204e3eff899e1dab47e3feacc8bd8afc42ac3b8f523</citedby><cites>FETCH-LOGICAL-c573t-8f8a926c669b95ecb91564204e3eff899e1dab47e3feacc8bd8afc42ac3b8f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6396494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6396494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23287920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Byram, B.</creatorcontrib><creatorcontrib>Trahey, G. E.</creatorcontrib><creatorcontrib>Palmeri, M.</creatorcontrib><title>Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Accurate and precise displacement estimation has been a hallmark of clinical ultrasound. Displacement estimation accuracy has largely been considered to be limited by the Cramer-Rao lower bound (CRLB). However, the CRLB only describes the minimum variance obtainable from unbiased estimators. Unbiased estimators are generally implemented using Bayes' theorem, which requires a likelihood function. The classic likelihood function for the displacement estimation problem is not discriminative and is difficult to implement for clinically relevant ultrasound with diffuse scattering. Because the classic likelihood function is not effective, a perturbation is proposed. The proposed likelihood function was evaluated and compared against the classic likelihood function by converting both to posterior probability density functions (PDFs) using a noninformative prior. Example results are reported for bulk motion simulations using a 6λ tracking kernel and 30 dB SNR for 1000 data realizations. The canonical likelihood function assigned the true displacement a mean probability of only 0.070 ± 0.020, whereas the new likelihood function assigned the true displacement a much higher probability of 0.22 ± 0.16. The new likelihood function shows improvements at least for bulk motion, acoustic radiation force induced motion, and compressive motion, and at least for SNRs greater than 10 dB and kernel lengths between 1.5 and 12λ.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Estimation</subject><subject>Force</subject><subject>Kernel</subject><subject>Likelihood Functions</subject><subject>Measurement</subject><subject>Models, Theoretical</subject><subject>Monte Carlo simulation</subject><subject>Noise</subject><subject>Scattering, Radiation</subject><subject>Signal-To-Noise Ratio</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonics</subject><subject>Ultrasonography - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkr9v1DAYhiMEokdhZkBCllhYcvXv2AyV4MRBpUowtLPlOF967uXiYCdIXfuX15crJ2CBycP7-NH3fXqL4jXBS0KwPru6Xq9XS4oJW1LBxZNiQQQVpdJCPC0WWClRMkzwSfEipVuMCeeaPi9OKKOq0hQvivtP9g6Stz1KA7htB2iM1m19f7NE320c0cUHlEO_GzrYQT_aOiMDxHGKtR196NEY0LgB1PktdH4TQoPaqXdz1IaIpi4LU5j6BjU-DZ11swdBGv1uNrwsnrW2S_Dq8T0trtefr1Zfy8tvXy5WHy9LJyo2lqpVVlPppNS1FuBqTYTkFHNg0LZKayCNrXkFrAXrnKobZVvHqXWsVq2g7LQ4P3iHqd5B4_IU0XZmiHmOeGeC9ebPpPcbcxN-GiZ4JYXOgvePghh-THkBs_PJQdfZHsKUDGF5IkHzif8P5Upj9m-UVoziiszWd3-ht2GKfT5apqQUstJYZursQLkYUorQHlck2OxbY-bWmH1rzL41-cfb3y9z5H_VJANvDoAHgGMsmZZcc_YAqeTJtA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Byram, B.</creator><creator>Trahey, G. E.</creator><creator>Palmeri, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201301</creationdate><title>Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation</title><author>Byram, B. ; Trahey, G. E. ; Palmeri, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-8f8a926c669b95ecb91564204e3eff899e1dab47e3feacc8bd8afc42ac3b8f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Estimation</topic><topic>Force</topic><topic>Kernel</topic><topic>Likelihood Functions</topic><topic>Measurement</topic><topic>Models, Theoretical</topic><topic>Monte Carlo simulation</topic><topic>Noise</topic><topic>Scattering, Radiation</topic><topic>Signal-To-Noise Ratio</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonics</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byram, B.</creatorcontrib><creatorcontrib>Trahey, G. E.</creatorcontrib><creatorcontrib>Palmeri, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Byram, B.</au><au>Trahey, G. E.</au><au>Palmeri, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2013-01</date><risdate>2013</risdate><volume>60</volume><issue>1</issue><spage>132</spage><epage>143</epage><pages>132-143</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Accurate and precise displacement estimation has been a hallmark of clinical ultrasound. Displacement estimation accuracy has largely been considered to be limited by the Cramer-Rao lower bound (CRLB). However, the CRLB only describes the minimum variance obtainable from unbiased estimators. Unbiased estimators are generally implemented using Bayes' theorem, which requires a likelihood function. The classic likelihood function for the displacement estimation problem is not discriminative and is difficult to implement for clinically relevant ultrasound with diffuse scattering. Because the classic likelihood function is not effective, a perturbation is proposed. The proposed likelihood function was evaluated and compared against the classic likelihood function by converting both to posterior probability density functions (PDFs) using a noninformative prior. Example results are reported for bulk motion simulations using a 6λ tracking kernel and 30 dB SNR for 1000 data realizations. The canonical likelihood function assigned the true displacement a mean probability of only 0.070 ± 0.020, whereas the new likelihood function assigned the true displacement a much higher probability of 0.22 ± 0.16. The new likelihood function shows improvements at least for bulk motion, acoustic radiation force induced motion, and compressive motion, and at least for SNRs greater than 10 dB and kernel lengths between 1.5 and 12λ.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23287920</pmid><doi>10.1109/TUFFC.2013.2545</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-01, Vol.60 (1), p.132-143
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_1315648903
source IEEE Electronic Library (IEL)
subjects Acoustics
Algorithms
Bayes Theorem
Bayesian analysis
Estimation
Force
Kernel
Likelihood Functions
Measurement
Models, Theoretical
Monte Carlo simulation
Noise
Scattering, Radiation
Signal-To-Noise Ratio
Statistical methods
Studies
Ultrasonic imaging
Ultrasonics
Ultrasonography - methods
title Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20speckle%20tracking.%20Part%20I:%20an%20implementable%20perturbation%20to%20the%20likelihood%20function%20for%20ultrasound%20displacement%20estimation&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Byram,%20B.&rft.date=2013-01&rft.volume=60&rft.issue=1&rft.spage=132&rft.epage=143&rft.pages=132-143&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2013.2545&rft_dat=%3Cproquest_RIE%3E2858072921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266567906&rft_id=info:pmid/23287920&rft_ieee_id=6396494&rfr_iscdi=true