Evaluation of a Single Cell and Candidate Materials with High Water Content Hydrogen in a Generic Solid Oxide Fuel Cell Stack Test Fixture, Part II: Materials and Interface Characterization
A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic operating conditions. A commercial 50 mm × 50 mm NiO‐YSZ anode‐supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM)/YSZ cathode was tested to evaluate the stabili...
Gespeichert in:
Veröffentlicht in: | International Journal of Applied Ceramic Technology, 10(1):97-106 10(1):97-106, 2013-01, Vol.10 (1), p.97-106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | International Journal of Applied Ceramic Technology, 10(1):97-106 |
container_volume | 10 |
creator | Chou, Yeong-Shyung Stevenson, Jeffry W. Choi, Jung-Pyung |
description | A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic operating conditions. A commercial 50 mm × 50 mm NiO‐YSZ anode‐supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM)/YSZ cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800°C: stage I with low (~3% H2O) humidity and stage II with high (~30% H2O) humidity hydrogen fuel in constant voltage or constant current mode. Part I of the work, published previously, provided information regarding the generic test fixture design, materials, cell performance, and optical post‐mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)‐spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)‐spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720 h at 800°C. Aluminization of metallic interconnects also proved to be chemically compatible with alkaline‐earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed. |
doi_str_mv | 10.1111/j.1744-7402.2012.02753.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315646735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315646735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4413-ea2a4c6ffff36f1225fd433fd6bfbbce6b355bf795c58f1e5584e185beda56ca3</originalsourceid><addsrcrecordid>eNqNUU1v1DAQjRBIlMJ_sODCgSxx_JEsF1RF3Y-qUKQtKuJiOc5419vUaW2H7va_9b_hbFCFODGH8cjz5s08vSRBOJvgGB-3E1xQmhY0yyd5hvNJlheMTHbPkqOnxvNYM8pTRvMfL5NX3m-zjFBC-FHyePpLtr0MprOo00iilbHrFlAFbYukbVAVk2lkAPQlJmdk69G9CRu0MOsNuhr-UNXZADagxb5x3RosMjYyzcFGvEKrrjUNutiZBtCsh3bkXgWprtEl-IBmZhd6Bx_QN-kCWi4__bVqOGEZ2Z2WKl61kU6qofdwOPl18kJHFLz58x4n32enl9UiPb-YL6uT81RRikkKMpdUcR2DcI3znOkmytcNr3VdK-A1YazWxZQpVmoMjJUUcMlqaCTjSpLj5O3I2_lghFcmgNqozlpQQeCMZ9mURtD7EXTrurs-ChM3xquoVVroei8wwYxTXhAWoe_-gW673tkoQeCc85yTyBdR5YhSrvPegRa3ztxIt48rxWC-2IrBYzF4LAbzxcF8sYujn8fRe9PC_r_nxPLspDrUkSEdGYwPsHtikO5aRAkFE1df52JelOXiZzEVZ-Q3p3jGIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266263943</pqid></control><display><type>article</type><title>Evaluation of a Single Cell and Candidate Materials with High Water Content Hydrogen in a Generic Solid Oxide Fuel Cell Stack Test Fixture, Part II: Materials and Interface Characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chou, Yeong-Shyung ; Stevenson, Jeffry W. ; Choi, Jung-Pyung</creator><creatorcontrib>Chou, Yeong-Shyung ; Stevenson, Jeffry W. ; Choi, Jung-Pyung ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic operating conditions. A commercial 50 mm × 50 mm NiO‐YSZ anode‐supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM)/YSZ cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800°C: stage I with low (~3% H2O) humidity and stage II with high (~30% H2O) humidity hydrogen fuel in constant voltage or constant current mode. Part I of the work, published previously, provided information regarding the generic test fixture design, materials, cell performance, and optical post‐mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)‐spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)‐spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720 h at 800°C. Aluminization of metallic interconnects also proved to be chemically compatible with alkaline‐earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/j.1744-7402.2012.02753.x</identifier><language>eng</language><publisher>Malden: Blackwell Publishing Ltd</publisher><subject>(Mn,Co)-spinel ; aluminization ; Chromium ; Coating ; Electrolytic cells ; Fixtures ; interface ; Materials selection ; Sealing ; sealing glass ; SOFC ; Solid oxide fuel cells ; SS441 ; Yttria stabilized zirconia</subject><ispartof>International Journal of Applied Ceramic Technology, 10(1):97-106, 2013-01, Vol.10 (1), p.97-106</ispartof><rights>2012 American Ceramic Society</rights><rights>Copyright © 2013 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4413-ea2a4c6ffff36f1225fd433fd6bfbbce6b355bf795c58f1e5584e185beda56ca3</citedby><cites>FETCH-LOGICAL-c4413-ea2a4c6ffff36f1225fd433fd6bfbbce6b355bf795c58f1e5584e185beda56ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1744-7402.2012.02753.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1744-7402.2012.02753.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1060094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chou, Yeong-Shyung</creatorcontrib><creatorcontrib>Stevenson, Jeffry W.</creatorcontrib><creatorcontrib>Choi, Jung-Pyung</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Evaluation of a Single Cell and Candidate Materials with High Water Content Hydrogen in a Generic Solid Oxide Fuel Cell Stack Test Fixture, Part II: Materials and Interface Characterization</title><title>International Journal of Applied Ceramic Technology, 10(1):97-106</title><addtitle>Int. J. Appl. Ceram. Technol</addtitle><description>A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic operating conditions. A commercial 50 mm × 50 mm NiO‐YSZ anode‐supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM)/YSZ cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800°C: stage I with low (~3% H2O) humidity and stage II with high (~30% H2O) humidity hydrogen fuel in constant voltage or constant current mode. Part I of the work, published previously, provided information regarding the generic test fixture design, materials, cell performance, and optical post‐mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)‐spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)‐spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720 h at 800°C. Aluminization of metallic interconnects also proved to be chemically compatible with alkaline‐earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.</description><subject>(Mn,Co)-spinel</subject><subject>aluminization</subject><subject>Chromium</subject><subject>Coating</subject><subject>Electrolytic cells</subject><subject>Fixtures</subject><subject>interface</subject><subject>Materials selection</subject><subject>Sealing</subject><subject>sealing glass</subject><subject>SOFC</subject><subject>Solid oxide fuel cells</subject><subject>SS441</subject><subject>Yttria stabilized zirconia</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUU1v1DAQjRBIlMJ_sODCgSxx_JEsF1RF3Y-qUKQtKuJiOc5419vUaW2H7va_9b_hbFCFODGH8cjz5s08vSRBOJvgGB-3E1xQmhY0yyd5hvNJlheMTHbPkqOnxvNYM8pTRvMfL5NX3m-zjFBC-FHyePpLtr0MprOo00iilbHrFlAFbYukbVAVk2lkAPQlJmdk69G9CRu0MOsNuhr-UNXZADagxb5x3RosMjYyzcFGvEKrrjUNutiZBtCsh3bkXgWprtEl-IBmZhd6Bx_QN-kCWi4__bVqOGEZ2Z2WKl61kU6qofdwOPl18kJHFLz58x4n32enl9UiPb-YL6uT81RRikkKMpdUcR2DcI3znOkmytcNr3VdK-A1YazWxZQpVmoMjJUUcMlqaCTjSpLj5O3I2_lghFcmgNqozlpQQeCMZ9mURtD7EXTrurs-ChM3xquoVVroei8wwYxTXhAWoe_-gW673tkoQeCc85yTyBdR5YhSrvPegRa3ztxIt48rxWC-2IrBYzF4LAbzxcF8sYujn8fRe9PC_r_nxPLspDrUkSEdGYwPsHtikO5aRAkFE1df52JelOXiZzEVZ-Q3p3jGIQ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Chou, Yeong-Shyung</creator><creator>Stevenson, Jeffry W.</creator><creator>Choi, Jung-Pyung</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope><scope>7SP</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>201301</creationdate><title>Evaluation of a Single Cell and Candidate Materials with High Water Content Hydrogen in a Generic Solid Oxide Fuel Cell Stack Test Fixture, Part II: Materials and Interface Characterization</title><author>Chou, Yeong-Shyung ; Stevenson, Jeffry W. ; Choi, Jung-Pyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4413-ea2a4c6ffff36f1225fd433fd6bfbbce6b355bf795c58f1e5584e185beda56ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>(Mn,Co)-spinel</topic><topic>aluminization</topic><topic>Chromium</topic><topic>Coating</topic><topic>Electrolytic cells</topic><topic>Fixtures</topic><topic>interface</topic><topic>Materials selection</topic><topic>Sealing</topic><topic>sealing glass</topic><topic>SOFC</topic><topic>Solid oxide fuel cells</topic><topic>SS441</topic><topic>Yttria stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Yeong-Shyung</creatorcontrib><creatorcontrib>Stevenson, Jeffry W.</creatorcontrib><creatorcontrib>Choi, Jung-Pyung</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>International Journal of Applied Ceramic Technology, 10(1):97-106</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Yeong-Shyung</au><au>Stevenson, Jeffry W.</au><au>Choi, Jung-Pyung</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a Single Cell and Candidate Materials with High Water Content Hydrogen in a Generic Solid Oxide Fuel Cell Stack Test Fixture, Part II: Materials and Interface Characterization</atitle><jtitle>International Journal of Applied Ceramic Technology, 10(1):97-106</jtitle><addtitle>Int. J. Appl. Ceram. Technol</addtitle><date>2013-01</date><risdate>2013</risdate><volume>10</volume><issue>1</issue><spage>97</spage><epage>106</epage><pages>97-106</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic operating conditions. A commercial 50 mm × 50 mm NiO‐YSZ anode‐supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM)/YSZ cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800°C: stage I with low (~3% H2O) humidity and stage II with high (~30% H2O) humidity hydrogen fuel in constant voltage or constant current mode. Part I of the work, published previously, provided information regarding the generic test fixture design, materials, cell performance, and optical post‐mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)‐spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)‐spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720 h at 800°C. Aluminization of metallic interconnects also proved to be chemically compatible with alkaline‐earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.</abstract><cop>Malden</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1744-7402.2012.02753.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-542X |
ispartof | International Journal of Applied Ceramic Technology, 10(1):97-106, 2013-01, Vol.10 (1), p.97-106 |
issn | 1546-542X 1744-7402 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315646735 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | (Mn,Co)-spinel aluminization Chromium Coating Electrolytic cells Fixtures interface Materials selection Sealing sealing glass SOFC Solid oxide fuel cells SS441 Yttria stabilized zirconia |
title | Evaluation of a Single Cell and Candidate Materials with High Water Content Hydrogen in a Generic Solid Oxide Fuel Cell Stack Test Fixture, Part II: Materials and Interface Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20Single%20Cell%20and%20Candidate%20Materials%20with%20High%20Water%20Content%20Hydrogen%20in%20a%20Generic%20Solid%20Oxide%20Fuel%20Cell%20Stack%20Test%20Fixture,%20Part%20II:%20Materials%20and%20Interface%20Characterization&rft.jtitle=International%20Journal%20of%20Applied%20Ceramic%20Technology,%2010(1):97-106&rft.au=Chou,%20Yeong-Shyung&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2013-01&rft.volume=10&rft.issue=1&rft.spage=97&rft.epage=106&rft.pages=97-106&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/j.1744-7402.2012.02753.x&rft_dat=%3Cproquest_osti_%3E1315646735%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266263943&rft_id=info:pmid/&rfr_iscdi=true |