Chemical, acoustic and optical response profiling for analysing burning patterns

Improved data processing algorithms along with modelling techniques were employed in order to profile the responses and to assess the analytical capabilities of a system consisting of a mass spectrometer, a camera and a microphone for synchronized chemical, optical and acoustic monitoring of lab-sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2013-01, Vol.176, p.290-298
Hauptverfasser: Mikedi, K., Stavrakakis, P., Agapiou, A., Moirogiorgou, K., Karma, S., Pallis, G.C., Pappa, A., Statheropoulos, M., Zervakis, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue
container_start_page 290
container_title Sensors and actuators. B, Chemical
container_volume 176
creator Mikedi, K.
Stavrakakis, P.
Agapiou, A.
Moirogiorgou, K.
Karma, S.
Pallis, G.C.
Pappa, A.
Statheropoulos, M.
Zervakis, M.
description Improved data processing algorithms along with modelling techniques were employed in order to profile the responses and to assess the analytical capabilities of a system consisting of a mass spectrometer, a camera and a microphone for synchronized chemical, optical and acoustic monitoring of lab-scale fires. The combustion of cotton textile, inkjet white paper and oak wood was monitored by this system in a laboratory based environment under controlled conditions. Signal processing enabled the identification of modalities of different material burning, through the modelling and curve fitting techniques. For the chemical and optical responses, the temporal models with curve fitting were used, whereas for the acoustic signal, spectral analysis was applied for quantifying harmonics. The synergy of the three sensing technologies, augmented by signal processing and modelling, resulted in initial models, characteristic for the fire pattern for each material studied. The potentials emerged by this exploratory work needs further elaboration and elucidation, since the analytical prospective of the proposed approach is considerable and auspicious.
doi_str_mv 10.1016/j.snb.2012.07.103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315646214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400512007976</els_id><sourcerecordid>1315646214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-371974ad4c34d92af665dc638d268572a7b93b668f3d5b3faa7f61648cda37273</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gCu7dGFrXk1aXMngCwYUdNYhzWPM0Elq0hHm35tS164O9_Ddw70HgCsEKwQRu9tWyXcVhghXkGeLHIEFajgpCeT8GCxgi-uSQlifgrOUthBCShhcgPfll9k5JfvbQqqwT6NThfS6CMM4uUU0aQg-mWKIwbre-U1hQ8yI7A9pmrp99JMOchxN9OkCnFjZJ3P5p-dg_fT4uXwpV2_Pr8uHValITceScNRyKjVVhOoWS8tYrRUjjcasqTmWvGtJx1hjia47YqXkliFGG6Ul4ZiTc3Az5-bDvvcmjWLnkjJ9L73JfwhEUM0ow4hmFM2oiiGlaKwYotvJeBAIiqk9sRW5PTG1JyDPFsk71_OOlUHITXRJrD8yUEOIEMNtk4n7mTD5yx9nokjKGa-MdtGoUejg_sn_BSVugSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315646214</pqid></control><display><type>article</type><title>Chemical, acoustic and optical response profiling for analysing burning patterns</title><source>Elsevier ScienceDirect Journals</source><creator>Mikedi, K. ; Stavrakakis, P. ; Agapiou, A. ; Moirogiorgou, K. ; Karma, S. ; Pallis, G.C. ; Pappa, A. ; Statheropoulos, M. ; Zervakis, M.</creator><creatorcontrib>Mikedi, K. ; Stavrakakis, P. ; Agapiou, A. ; Moirogiorgou, K. ; Karma, S. ; Pallis, G.C. ; Pappa, A. ; Statheropoulos, M. ; Zervakis, M.</creatorcontrib><description>Improved data processing algorithms along with modelling techniques were employed in order to profile the responses and to assess the analytical capabilities of a system consisting of a mass spectrometer, a camera and a microphone for synchronized chemical, optical and acoustic monitoring of lab-scale fires. The combustion of cotton textile, inkjet white paper and oak wood was monitored by this system in a laboratory based environment under controlled conditions. Signal processing enabled the identification of modalities of different material burning, through the modelling and curve fitting techniques. For the chemical and optical responses, the temporal models with curve fitting were used, whereas for the acoustic signal, spectral analysis was applied for quantifying harmonics. The synergy of the three sensing technologies, augmented by signal processing and modelling, resulted in initial models, characteristic for the fire pattern for each material studied. The potentials emerged by this exploratory work needs further elaboration and elucidation, since the analytical prospective of the proposed approach is considerable and auspicious.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2012.07.103</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustics ; algorithms ; burning ; Burning pattern ; Combustion ; cotton ; Curve fitting ; Fires ; Indoor fires ; Mathematical analysis ; Modelling ; monitoring ; Pulsed sampling system-mass spectrometer (PSS-MS) ; Sensor integration ; Signal processing ; Signal waveform modelling ; spectral analysis ; spectrometers ; Volatile organic compounds (VOCs) ; wood</subject><ispartof>Sensors and actuators. B, Chemical, 2013-01, Vol.176, p.290-298</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-371974ad4c34d92af665dc638d268572a7b93b668f3d5b3faa7f61648cda37273</citedby><cites>FETCH-LOGICAL-c354t-371974ad4c34d92af665dc638d268572a7b93b668f3d5b3faa7f61648cda37273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400512007976$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Mikedi, K.</creatorcontrib><creatorcontrib>Stavrakakis, P.</creatorcontrib><creatorcontrib>Agapiou, A.</creatorcontrib><creatorcontrib>Moirogiorgou, K.</creatorcontrib><creatorcontrib>Karma, S.</creatorcontrib><creatorcontrib>Pallis, G.C.</creatorcontrib><creatorcontrib>Pappa, A.</creatorcontrib><creatorcontrib>Statheropoulos, M.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><title>Chemical, acoustic and optical response profiling for analysing burning patterns</title><title>Sensors and actuators. B, Chemical</title><description>Improved data processing algorithms along with modelling techniques were employed in order to profile the responses and to assess the analytical capabilities of a system consisting of a mass spectrometer, a camera and a microphone for synchronized chemical, optical and acoustic monitoring of lab-scale fires. The combustion of cotton textile, inkjet white paper and oak wood was monitored by this system in a laboratory based environment under controlled conditions. Signal processing enabled the identification of modalities of different material burning, through the modelling and curve fitting techniques. For the chemical and optical responses, the temporal models with curve fitting were used, whereas for the acoustic signal, spectral analysis was applied for quantifying harmonics. The synergy of the three sensing technologies, augmented by signal processing and modelling, resulted in initial models, characteristic for the fire pattern for each material studied. The potentials emerged by this exploratory work needs further elaboration and elucidation, since the analytical prospective of the proposed approach is considerable and auspicious.</description><subject>Acoustics</subject><subject>algorithms</subject><subject>burning</subject><subject>Burning pattern</subject><subject>Combustion</subject><subject>cotton</subject><subject>Curve fitting</subject><subject>Fires</subject><subject>Indoor fires</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>monitoring</subject><subject>Pulsed sampling system-mass spectrometer (PSS-MS)</subject><subject>Sensor integration</subject><subject>Signal processing</subject><subject>Signal waveform modelling</subject><subject>spectral analysis</subject><subject>spectrometers</subject><subject>Volatile organic compounds (VOCs)</subject><subject>wood</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gCu7dGFrXk1aXMngCwYUdNYhzWPM0Elq0hHm35tS164O9_Ddw70HgCsEKwQRu9tWyXcVhghXkGeLHIEFajgpCeT8GCxgi-uSQlifgrOUthBCShhcgPfll9k5JfvbQqqwT6NThfS6CMM4uUU0aQg-mWKIwbre-U1hQ8yI7A9pmrp99JMOchxN9OkCnFjZJ3P5p-dg_fT4uXwpV2_Pr8uHValITceScNRyKjVVhOoWS8tYrRUjjcasqTmWvGtJx1hjia47YqXkliFGG6Ul4ZiTc3Az5-bDvvcmjWLnkjJ9L73JfwhEUM0ow4hmFM2oiiGlaKwYotvJeBAIiqk9sRW5PTG1JyDPFsk71_OOlUHITXRJrD8yUEOIEMNtk4n7mTD5yx9nokjKGa-MdtGoUejg_sn_BSVugSY</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Mikedi, K.</creator><creator>Stavrakakis, P.</creator><creator>Agapiou, A.</creator><creator>Moirogiorgou, K.</creator><creator>Karma, S.</creator><creator>Pallis, G.C.</creator><creator>Pappa, A.</creator><creator>Statheropoulos, M.</creator><creator>Zervakis, M.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Chemical, acoustic and optical response profiling for analysing burning patterns</title><author>Mikedi, K. ; Stavrakakis, P. ; Agapiou, A. ; Moirogiorgou, K. ; Karma, S. ; Pallis, G.C. ; Pappa, A. ; Statheropoulos, M. ; Zervakis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-371974ad4c34d92af665dc638d268572a7b93b668f3d5b3faa7f61648cda37273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>algorithms</topic><topic>burning</topic><topic>Burning pattern</topic><topic>Combustion</topic><topic>cotton</topic><topic>Curve fitting</topic><topic>Fires</topic><topic>Indoor fires</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>monitoring</topic><topic>Pulsed sampling system-mass spectrometer (PSS-MS)</topic><topic>Sensor integration</topic><topic>Signal processing</topic><topic>Signal waveform modelling</topic><topic>spectral analysis</topic><topic>spectrometers</topic><topic>Volatile organic compounds (VOCs)</topic><topic>wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikedi, K.</creatorcontrib><creatorcontrib>Stavrakakis, P.</creatorcontrib><creatorcontrib>Agapiou, A.</creatorcontrib><creatorcontrib>Moirogiorgou, K.</creatorcontrib><creatorcontrib>Karma, S.</creatorcontrib><creatorcontrib>Pallis, G.C.</creatorcontrib><creatorcontrib>Pappa, A.</creatorcontrib><creatorcontrib>Statheropoulos, M.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikedi, K.</au><au>Stavrakakis, P.</au><au>Agapiou, A.</au><au>Moirogiorgou, K.</au><au>Karma, S.</au><au>Pallis, G.C.</au><au>Pappa, A.</au><au>Statheropoulos, M.</au><au>Zervakis, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical, acoustic and optical response profiling for analysing burning patterns</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2013-01</date><risdate>2013</risdate><volume>176</volume><spage>290</spage><epage>298</epage><pages>290-298</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Improved data processing algorithms along with modelling techniques were employed in order to profile the responses and to assess the analytical capabilities of a system consisting of a mass spectrometer, a camera and a microphone for synchronized chemical, optical and acoustic monitoring of lab-scale fires. The combustion of cotton textile, inkjet white paper and oak wood was monitored by this system in a laboratory based environment under controlled conditions. Signal processing enabled the identification of modalities of different material burning, through the modelling and curve fitting techniques. For the chemical and optical responses, the temporal models with curve fitting were used, whereas for the acoustic signal, spectral analysis was applied for quantifying harmonics. The synergy of the three sensing technologies, augmented by signal processing and modelling, resulted in initial models, characteristic for the fire pattern for each material studied. The potentials emerged by this exploratory work needs further elaboration and elucidation, since the analytical prospective of the proposed approach is considerable and auspicious.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2012.07.103</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2013-01, Vol.176, p.290-298
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1315646214
source Elsevier ScienceDirect Journals
subjects Acoustics
algorithms
burning
Burning pattern
Combustion
cotton
Curve fitting
Fires
Indoor fires
Mathematical analysis
Modelling
monitoring
Pulsed sampling system-mass spectrometer (PSS-MS)
Sensor integration
Signal processing
Signal waveform modelling
spectral analysis
spectrometers
Volatile organic compounds (VOCs)
wood
title Chemical, acoustic and optical response profiling for analysing burning patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical,%20acoustic%20and%20optical%20response%20profiling%20for%20analysing%20burning%20patterns&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Mikedi,%20K.&rft.date=2013-01&rft.volume=176&rft.spage=290&rft.epage=298&rft.pages=290-298&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2012.07.103&rft_dat=%3Cproquest_cross%3E1315646214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315646214&rft_id=info:pmid/&rft_els_id=S0925400512007976&rfr_iscdi=true