A Finite-Time Dual Method for Negotiation between Dynamical Systems

This work presents a distributed algorithm for online negotiations of an optimal control policy between dynamical systems. We consider a network of self-interested agents that must agree upon a common state within a specified finite time. The proposed algorithm exploits the distributed structure of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2013-01, Vol.51 (1), p.172-194
Hauptverfasser: Zelazo, Daniel, Burger, Mathias, Allgower, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 1
container_start_page 172
container_title SIAM journal on control and optimization
container_volume 51
creator Zelazo, Daniel
Burger, Mathias
Allgower, Frank
description This work presents a distributed algorithm for online negotiations of an optimal control policy between dynamical systems. We consider a network of self-interested agents that must agree upon a common state within a specified finite time. The proposed algorithm exploits the distributed structure of the corresponding dual problem and uses a "shrinking horizon" property to enforce the finite-time constraint. It is shown that this algorithm evolves like a time-varying and linear dynamical system, parameterized by a scalar variable analogous to the step-size rule in subgradient methods. The convergence and performance properties of the system are studied in the context of error systems between the algorithm trajectories and a sequence of centralized optimal control trajectories. This analysis provides a simple linear matrix inequality condition for choosing a proper step-size rule and also gives conditions for when no step-size rule can guarantee uniform convergence of the error systems. These conditions are shown to be functions of communication graph Laplacian eigenvalues and the state and control weights of each agent. We also provide a lower bound on the horizon time that guarantees that the terminal state generated by the algorithm is $\delta$-close to an agreement state. The results are then demonstrated via a few numerical simulations. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/100819175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315645709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859736601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-8a97aa87f6c3753c71c9d71d1ef5a87dddd435ee2cea130f07762b9fef7abe843</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq4fB_9BwYseqpmmaZrjsuuqsOrB9Ryy6USztM2apMj-eysrHpzLwPDwMryEXAC9AWDiFiitQYLgB2QCVPJcAKsPyYSyiuUUCnlMTmLcUAplCeWEzKbZwvUuYb5yHWbzQbfZE6YP32TWh-wZ331yOjnfZ2tMX4h9Nt_1unNmhK-7mLCLZ-TI6jbi-e8-JW-Lu9XsIV--3D_OpsvcFJKmvNZSaF0LWxkmODMCjGwENICWj-dmnJJxxMKgBkYtFaIq1tKiFXqNdclOydU-dxv854Axqc5Fg22re_RDVMCAVyUXVI708h_d-CH043cKikoASCbpqK73ygQfY0CrtsF1OuwUUPVTp_qrk30DT2llow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267119390</pqid></control><display><type>article</type><title>A Finite-Time Dual Method for Negotiation between Dynamical Systems</title><source>SIAM Journals</source><creator>Zelazo, Daniel ; Burger, Mathias ; Allgower, Frank</creator><creatorcontrib>Zelazo, Daniel ; Burger, Mathias ; Allgower, Frank</creatorcontrib><description>This work presents a distributed algorithm for online negotiations of an optimal control policy between dynamical systems. We consider a network of self-interested agents that must agree upon a common state within a specified finite time. The proposed algorithm exploits the distributed structure of the corresponding dual problem and uses a "shrinking horizon" property to enforce the finite-time constraint. It is shown that this algorithm evolves like a time-varying and linear dynamical system, parameterized by a scalar variable analogous to the step-size rule in subgradient methods. The convergence and performance properties of the system are studied in the context of error systems between the algorithm trajectories and a sequence of centralized optimal control trajectories. This analysis provides a simple linear matrix inequality condition for choosing a proper step-size rule and also gives conditions for when no step-size rule can guarantee uniform convergence of the error systems. These conditions are shown to be functions of communication graph Laplacian eigenvalues and the state and control weights of each agent. We also provide a lower bound on the horizon time that guarantees that the terminal state generated by the algorithm is $\delta$-close to an agreement state. The results are then demonstrated via a few numerical simulations. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/100819175</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Agreements ; Algorithms ; Communication ; Decomposition ; Dynamical systems ; Dynamics ; Eigenvalues ; Error analysis ; Lagrange multiplier ; Mathematical analysis ; Mathematical models ; Negotiations ; Optimization ; System theory ; Trajectories</subject><ispartof>SIAM journal on control and optimization, 2013-01, Vol.51 (1), p.172-194</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-8a97aa87f6c3753c71c9d71d1ef5a87dddd435ee2cea130f07762b9fef7abe843</citedby><cites>FETCH-LOGICAL-c290t-8a97aa87f6c3753c71c9d71d1ef5a87dddd435ee2cea130f07762b9fef7abe843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Zelazo, Daniel</creatorcontrib><creatorcontrib>Burger, Mathias</creatorcontrib><creatorcontrib>Allgower, Frank</creatorcontrib><title>A Finite-Time Dual Method for Negotiation between Dynamical Systems</title><title>SIAM journal on control and optimization</title><description>This work presents a distributed algorithm for online negotiations of an optimal control policy between dynamical systems. We consider a network of self-interested agents that must agree upon a common state within a specified finite time. The proposed algorithm exploits the distributed structure of the corresponding dual problem and uses a "shrinking horizon" property to enforce the finite-time constraint. It is shown that this algorithm evolves like a time-varying and linear dynamical system, parameterized by a scalar variable analogous to the step-size rule in subgradient methods. The convergence and performance properties of the system are studied in the context of error systems between the algorithm trajectories and a sequence of centralized optimal control trajectories. This analysis provides a simple linear matrix inequality condition for choosing a proper step-size rule and also gives conditions for when no step-size rule can guarantee uniform convergence of the error systems. These conditions are shown to be functions of communication graph Laplacian eigenvalues and the state and control weights of each agent. We also provide a lower bound on the horizon time that guarantees that the terminal state generated by the algorithm is $\delta$-close to an agreement state. The results are then demonstrated via a few numerical simulations. [PUBLICATION ABSTRACT]</description><subject>Agreements</subject><subject>Algorithms</subject><subject>Communication</subject><subject>Decomposition</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>Error analysis</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Negotiations</subject><subject>Optimization</subject><subject>System theory</subject><subject>Trajectories</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1LxDAQBuAgCq4fB_9BwYseqpmmaZrjsuuqsOrB9Ryy6USztM2apMj-eysrHpzLwPDwMryEXAC9AWDiFiitQYLgB2QCVPJcAKsPyYSyiuUUCnlMTmLcUAplCeWEzKbZwvUuYb5yHWbzQbfZE6YP32TWh-wZ331yOjnfZ2tMX4h9Nt_1unNmhK-7mLCLZ-TI6jbi-e8-JW-Lu9XsIV--3D_OpsvcFJKmvNZSaF0LWxkmODMCjGwENICWj-dmnJJxxMKgBkYtFaIq1tKiFXqNdclOydU-dxv854Axqc5Fg22re_RDVMCAVyUXVI708h_d-CH043cKikoASCbpqK73ygQfY0CrtsF1OuwUUPVTp_qrk30DT2llow</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Zelazo, Daniel</creator><creator>Burger, Mathias</creator><creator>Allgower, Frank</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>A Finite-Time Dual Method for Negotiation between Dynamical Systems</title><author>Zelazo, Daniel ; Burger, Mathias ; Allgower, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-8a97aa87f6c3753c71c9d71d1ef5a87dddd435ee2cea130f07762b9fef7abe843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agreements</topic><topic>Algorithms</topic><topic>Communication</topic><topic>Decomposition</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>Error analysis</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Negotiations</topic><topic>Optimization</topic><topic>System theory</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zelazo, Daniel</creatorcontrib><creatorcontrib>Burger, Mathias</creatorcontrib><creatorcontrib>Allgower, Frank</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zelazo, Daniel</au><au>Burger, Mathias</au><au>Allgower, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Finite-Time Dual Method for Negotiation between Dynamical Systems</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>51</volume><issue>1</issue><spage>172</spage><epage>194</epage><pages>172-194</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>This work presents a distributed algorithm for online negotiations of an optimal control policy between dynamical systems. We consider a network of self-interested agents that must agree upon a common state within a specified finite time. The proposed algorithm exploits the distributed structure of the corresponding dual problem and uses a "shrinking horizon" property to enforce the finite-time constraint. It is shown that this algorithm evolves like a time-varying and linear dynamical system, parameterized by a scalar variable analogous to the step-size rule in subgradient methods. The convergence and performance properties of the system are studied in the context of error systems between the algorithm trajectories and a sequence of centralized optimal control trajectories. This analysis provides a simple linear matrix inequality condition for choosing a proper step-size rule and also gives conditions for when no step-size rule can guarantee uniform convergence of the error systems. These conditions are shown to be functions of communication graph Laplacian eigenvalues and the state and control weights of each agent. We also provide a lower bound on the horizon time that guarantees that the terminal state generated by the algorithm is $\delta$-close to an agreement state. The results are then demonstrated via a few numerical simulations. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100819175</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2013-01, Vol.51 (1), p.172-194
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_miscellaneous_1315645709
source SIAM Journals
subjects Agreements
Algorithms
Communication
Decomposition
Dynamical systems
Dynamics
Eigenvalues
Error analysis
Lagrange multiplier
Mathematical analysis
Mathematical models
Negotiations
Optimization
System theory
Trajectories
title A Finite-Time Dual Method for Negotiation between Dynamical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Finite-Time%20Dual%20Method%20for%20Negotiation%20between%20Dynamical%20Systems&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Zelazo,%20Daniel&rft.date=2013-01-01&rft.volume=51&rft.issue=1&rft.spage=172&rft.epage=194&rft.pages=172-194&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/100819175&rft_dat=%3Cproquest_cross%3E2859736601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267119390&rft_id=info:pmid/&rfr_iscdi=true